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CS3230
eric_han@nus.edu.sg

https://eric-han.com

Computer Science

T12 – Week 13

Reductions and Com. Complexity (cont.)
CS3230 – Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com
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Admin

1 Please check:
Angle-Double-Right Tutorials - Attendance & Participation
Angle-Double-Right Assignments - Best Seven

2 Last lecture this week – Revision & Gradient Descent.
3 Some parting advice: $ is important but not everything.

Angle-Double-Right GES 2016: $3500, $4000, $5000
Angle-Double-Right CS3230 skills can help you land a good technical job.

4 FYP - AI & Machine Learning
5 CS3230 Practical Exercises

GES 2024
NUS GES 2024 Numbers
Angle-Right Bachelor of Computing (Computer Science)

Angle-Double-Right 25/50/75 percentile: $6500, $5600, $7500
Angle-Double-Right Mean: $6788
Angle-Double-Right Employed: 89.1%

https://github.com/eric-vader/nus-cs3230-practical
https://www.moe.gov.sg/-/media/files/post-secondary/ges-2024/web-publication-nus-ges-2024.pdf
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Student Feedback on Teaching (SFT)

NUS Student Feedback https://blue.nus.edu.sg/blue/:

Angle-Right Don’t Mix module/grading/project feedback - feedback only for teaching.
Angle-Right Feedback is confidential to university and anonymous to us.
Angle-Right Feedback is optional but highly encouraged.
Angle-Right Past student feedback improves teaching; see https://www.eric-han.com/teaching

Angle-Double-Right ie. Telegram access, More interactivity.
Angle-Right Your feedback is important to me, and will be used to improve my teaching.

Angle-Double-Right Good > Positive feedback > Encouragement
Teaching Awards (nominate)
Steer my career path

Angle-Double-Right Bad > Negative feedback (nicely pls) > Learning
Improvement
Better learning experience

https://blue.nus.edu.sg/blue/
https://www.eric-han.com/teaching
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Lecture Review

Angle-Right P: solvable in polynomial time

Angle-Right NP: verifiable in polynomial time
Prove SOMETHING is in NP:

1 Provide a certificate for ‘Yes’ instance.
2 Verify certificate in polynomial time.

Angle-Right NP-hard: polynomial-time reducible from all NP problems
Prove SOMETHING is in NP-hard:

1 Show it’s at least as hard as a known NP-hard problem.
2 Show reduction: A-PROVEN-NP-HARD-PROBLEM ≤𝑝 SOMETHING .

Angle-Right NP-complete: both in NP and NP-hard
Prove SOMETHING is in NP-complete:

1 Prove it’s in NP.
2 Prove it’s NP-hard.
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Question 1 [P1]/[G]

Which of the following imply P = NP?

a. There is a problem in P that is also NP-complete

b. There is a problem in P that is also in NP

c. There is a problem in NP that is also NP-hard
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Answer 1a
Angle-Right Suppose there exists a problem in P that is also in NP-complete
Angle-Right Since all NP-complete problems reduce to each other,
Angle-Right every NP problem would also be solvable in polynomial time.
Angle-Right So P = NP.

However, as of 2024, nobody has proven this yet!

Co
m

pl
ex

ity

P ≠ NP P = NP

NP-hard

NP-complete

P

NP

NP-hard

P = NP
≃ NP-complete

Figure 1: NP-complete with different assumptions (Wiki)

https://en.wikipedia.org/wiki/NP_%28complexity%29#/media/File:P_np_np-complete_np-hard.svg
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Answer 1b
Angle-Right Every problem in P is also in NP (i.e., P ⊆ NP).
Angle-Right P ⊆ NP does not imply P = NP.

Answer 1c
Angle-Right A problem in NP and NP-hard is a NP-complete problem.
Angle-Right Does not imply P = NP.
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Subset Sum

Given a multiset 𝑆 of 𝑛 integers (usually non-negative), 𝑆 = {𝑆1, 𝑆2,… , 𝑆𝑛}, and a
target integer 𝑊. Is there exists a subset 𝐼 ⊆ {1, 2,… , 𝑛} such that ∑𝑖∈𝐼 𝑆𝑖 = 𝑊?

(See Subset Sum on Visualgo)

Example
Angle-Right Given 𝑛 = 5, 𝑆 = {5, 1, 5, 1, 4}, and 𝑊 = 7
Angle-Right YES-instance, with certificate indices {0, 1, 3} (values {5, 1, 1}), summing to 7.

We want to prove SUBSET-SUM is NP-complete.

https://visualgo.net/en/reductions?slide=10


Re
du

ct
io

ns
an

d
Co

m
.

Co
m

pl
ex

ity
(c

on
t.)

—
CS

32
30

9/25

Question 2 [P2]

Prove that SUBSET-SUM is in NP.

Answer
Angle-Right Certificate: Subset 𝐼 itself (the indices of 𝑆 summing to 𝑊).
Angle-Right Verification: Check if ∑𝑖∈𝐼 𝑆𝑖 = 𝑊 in 𝑂(𝑛) time.

Pro-tips
1 Do NOT leave this question blank in the final.
2 Your verifier only needs to run in polynomial time w.r.t. input size—it does NOT

need to be the fastest possible.
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Question 3 [G]

Prove that SUBSET-SUM is NP-hard.

Hint: Reduce from 3-SAT (see on Visualgo).

Answer
Given a 3-SAT instance, we can reduce it to a SUBSET-SUM instance.
We build this reduction incrementally, with different attempts:

1 Modelling just variables.
2 Modelling Variables and Constraints.
3 Modelling Variables, Constraints, and Literals

https://visualgo.net/en/reductions?slide=5


Re
du

ct
io

ns
an

d
Co

m
.

Co
m

pl
ex

ity
(c

on
t.)

—
CS

32
30

10/25

Question 3 [G]

Prove that SUBSET-SUM is NP-hard.

Hint: Reduce from 3-SAT (see on Visualgo).

Answer
Given a 3-SAT instance, we can reduce it to a SUBSET-SUM instance.
We build this reduction incrementally, with different attempts:

1 Modelling just variables.
2 Modelling Variables and Constraints.
3 Modelling Variables, Constraints, and Literals

https://visualgo.net/en/reductions?slide=5


Re
du

ct
io

ns
an

d
Co

m
.

Co
m

pl
ex

ity
(c

on
t.)

—
CS

32
30

11/25

Attempt 1: Modelling just variables
Given a 3-SAT instance with variables {𝑥1,… , 𝑥𝑁}, we use symbols (literals) 𝑣𝑖 and 𝑣′

𝑖:
Angle-Right 𝑣𝑖: assign 𝑥𝑖 = TRUE
Angle-Right 𝑣′

𝑖: assign 𝑥𝑖 = FALSE
To ensure single assignment per variable, we use a base-10 bitmask:

Angle-Right Set target sum 𝑊 as a bitmask 1…110 (length 𝑁).
Angle-Right Each literal corresponds to an integer in set 𝑆, with the appropriate bit set to 1.

This guarantees each variable is assigned exactly once but doesn’t yet consider clause
constraints.
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We need to consider constraints.

Example
𝑥1 𝑥2 𝑥3 Value in 𝑆 Meaning

𝑣1 = 1 0 0 10010 𝑥1 = TRUE
𝑣′

1 = 1 0 0 10010 𝑥1 = FALSE
𝑣2 = 0 1 0 1010 𝑥2 = TRUE
𝑣′

2 = 0 1 0 1010 𝑥2 = FALSE
𝑣3 = 0 0 1 110 𝑥3 = TRUE
𝑣′

3 = 0 0 1 110 𝑥3 = FALSE
𝑊 = 1 1 1 11110

Table 1: Example with three variables {𝑥1, 𝑥2, 𝑥3}: Integers
𝑆 = {10010, 10010, 1010, 1010, 110, 110} with target sum 𝑊 = 11110.
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Attempt 2: Modelling Variables and Constraints
Now, include the constraints (clauses) in the 3-SAT formula Φ:
Angle-Right When assigning TRUE/FALSE for 𝑥𝑖,
Angle-Right we can know which clause will be true.

Use the bitmask approach again,
Angle-Right setting a bit to 1 if literal satisfies clause 𝐶𝑗.
Angle-Right In polynomial time, we can verify all 𝑀 clauses have at least one TRUE literal.

However, determining a suitable 𝑊 for clauses (𝐶1,… ,𝐶𝑀) isn’t straightforward, as the
number of satisfied literals varies (1–3 per clause).
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We can’t test multiple values of 𝑊 within SUBSET-SUM (eg. Testing 1231 vs. 3212).

Example

𝑥1 𝑥2 𝑥3 𝐶1 𝐶2 𝐶3 𝐶4 Value in 𝑆 Meaning
𝑣1 = 1 0 0 1 0 0 1 100100110
𝑣′

1 = 1 0 0 0 1 1 0 100011010 𝑥1 = FALSE satisfy 𝐶2 and 𝐶3
𝑣2 = 0 1 0 0 0 0 1 10000110
𝑣′

2 = 0 1 0 1 1 1 0 10111010 𝑥2 = FALSE satisfy 𝐶1, 𝐶2, and 𝐶3
𝑣3 = 0 0 1 0 0 1 1 1001110 𝑥3 = TRUE satisfy 𝐶3 and 𝐶4
𝑣′

3 = 0 0 1 1 1 0 0 1110010
𝑊 = 1 1 1 ? ? ? ? 111????10 𝐶1/𝐶2/𝐶3/𝐶4 has 1/2/3/1 satisfied literals

Table 2: Example of 3-SAT from CLRS:
Φ = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3). This is a YES-instance
with certificate 𝑥1 = 𝑥2 = FALSE and 𝑥3 = TRUE.
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Attempt 3: Modelling Variables, Constraints, and Literals
For each of the 𝑀 clauses in the 3-SAT instance, introduce two slack symbols:
Angle-Right 𝑠𝑗: adds slack +1 to clause 𝐶𝑗
Angle-Right 𝑠′

𝑗: adds slack +2 to clause 𝐶𝑗
This ensures variables, constraints, and literals are fully modelled, and sets a clear target
sum for each clause, completing the reduction to SUBSET-SUM .
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Example

𝑥1 𝑥2 𝑥3 𝐶1 𝐶2 𝐶3 𝐶4 Value in 𝑆 Meaning
𝑣1 = 1 0 0 1 0 0 1 100100110
𝑣′

1 = 1 0 0 0 1 1 0 100011010 𝑥1 = FALSE satisfy 𝐶2 and 𝐶3
𝑣2 = 0 1 0 0 0 0 1 10000110
𝑣′

2 = 0 1 0 1 1 1 0 10111010 𝑥2 = FALSE satisfy 𝐶1, 𝐶2, and 𝐶3
𝑣3 = 0 0 1 0 0 1 1 1001110 𝑥3 = TRUE satisfy 𝐶3 and 𝐶4
𝑣′

3 = 0 0 1 1 1 0 0 1110010
𝑠1 = 0 0 0 1 0 0 0 100010 Take both +1 slack
𝑠′

1 = 0 0 0 2 0 0 0 200010 and +2 slacks for 𝐶1
𝑠2 = 0 0 0 0 1 0 0 10010
𝑠′

2 = 0 0 0 0 2 0 0 20010 Take only +2 slacks for 𝐶2
𝑠3 = 0 0 0 0 0 1 0 1010 Take only +1 slack for 𝐶3
𝑠′

3 = 0 0 0 0 0 2 0 2010
𝑠4 = 0 0 0 0 0 0 1 110 Take both +1 slack
𝑠′

4 = 0 0 0 0 0 0 2 210 and +2 slacks for 𝐶4
𝑊 = 1 1 1 4 4 4 4 111444410 𝐶1/𝐶2/𝐶3/𝐶4 has target 4/4/4/4

Table 3: Example of 3-SAT from CLRS.
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Summary
We’ve reduced (any) Φ from 3-SAT to a corresponding SUBSET-SUM instance. Some
technical details (omitted, see CLRS 34.5.5) include:
Angle-Right Reduction runs in polynomial time.
Angle-Right YES-instance of 3-SAT ⟹ YES-instance of SUBSET-SUM .
Angle-Right YES-instance of SUBSET-SUM ⟹ YES-instance of 3-SAT .

Pro-tip
This detailed proof seems long, but NP-completeness proofs can be short—don’t skip such
questions! (See next question.)
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Find Family

Angle-Right Undirected Bipartite Graph: 𝐺 = (𝐿 ∪ 𝑅,𝐸)
Bipartite graph has disjoint vertex sets 𝐿,𝑅 with edges between 𝐿 and 𝑅.

Angle-Right Siblings: 𝑢, 𝑣 ∈ 𝐿
If there exists a vertex 𝑟 ∈ 𝑅 such that edges (𝑢, 𝑟) and (𝑣, 𝑟) both exist.

Angle-Right Family: 𝐹 ⊆ 𝐿
A subset is a family if for all distinct vertices in 𝑢, 𝑣 ∈ 𝐹 are siblings.

Angle-Right Decision Problem ( FIND-FAMILY ):
Given a bipartite graph 𝐺 = (𝐿 ∪ 𝑅,𝐸) and integer 𝑘, does there exist a family of
size ≥ 𝑘?
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Example
0

2

4

1

3

L R

Figure 2: Example bipartite graph with 𝐿 = {0, 2, 4} and 𝑅 = {1, 3}. Here, 0 and 2 are siblings, 2
and 4 are siblings, but {0, 2, 4} is not a family since 0 and 4 are not siblings.
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Question 4

Prove that FIND-FAMILY is in NP.

Answer
Angle-Right Certificate: The family set 𝐹 itself.
Angle-Right Verification: For each pair 𝑢, 𝑣 ∈ 𝐹, check if there exists 𝑟 ∈ 𝑅 adjacent to both.

Runs in 𝑂(|𝐹 | ⋅ |𝑅|) = 𝑂(|𝐿|2 ⋅ |𝑅|) — polynomial in input size.
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Question 5 [P3]/[G]

Prove that FIND-FAMILY is NP-hard.

Answer
1 Decide which … NP-hard problem to use.
2 Given …, we transform to FIND-FAMILY



Re
du

ct
io

ns
an

d
Co

m
.

Co
m

pl
ex

ity
(c

on
t.)

—
CS

32
30

21/25

Question 5 [P3]/[G]

Prove that FIND-FAMILY is NP-hard.

Answer
1 Decide which … NP-hard problem to use.
2 Given …, we transform to FIND-FAMILY



Re
du

ct
io

ns
an

d
Co

m
.

Co
m

pl
ex

ity
(c

on
t.)

—
CS

32
30

22/25

Decide which … NP-hard problem to use
We aim to solve an instance of another NP-hard problem using FIND-FAMILY .
Family definition: A subset 𝐹 ⊆ 𝐿 is a family if every pair 𝑢, 𝑣 ∈ 𝐹 are siblings.

Problem Condition on subset 𝐹
FIND-FAMILY ‘… for every pair of vertices in 𝐹, they are siblings’
CLIQUE ‘… for every pair of vertices in 𝐹, they are adjacent’

Try reduction: CLIQUE ≤𝑝 FIND-FAMILY
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Given …, we transform to FIND-FAMILY

Polynomial time reduction
1 Given a CLIQUE instance 𝐺 = (𝑉 ,𝐸): is there a clique of size ≥ 𝑘?
2 Construct a FIND-FAMILY instance with 𝐿 = 𝑉 and 𝑅 = 𝐸.
3 For each edge (𝑢, 𝑣) ∈ 𝐸, connect 𝑢 and 𝑣 in 𝐿 to node (𝑢, 𝑣) in 𝑅.

Total time to build the bipartite graph is polynomial 𝑂(|𝑉 | + |𝐸|).

Proof CLIQUE ⟺ FIND-FAMILY
Straightforward to argue YES-instance of CLIQUE corresponds ( ⟺ ) to a YES-instance
of FIND-FAMILY :
Angle-Right (⇒) Suppose 𝐺 has a clique of size 𝑘. ⋯
Angle-Right (⇐) Suppose there is a family of size 𝑘 in the bipartite graph. ⋯
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1

2

3

4

5

a

c

b

d e

f

1

2

3

4

5

a

b

c

d

e

f

L R

Figure 3: Edges d, e, f (in red) form a size-3 clique {3, 4, 5} in 𝐺, which corresponds to a size-3
family 𝐹 = {3, 4, 5} in the FIND-FAMILY instance.
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Congratulations

Give yourself a pat on the back for completing CS3230:

Angle-Right It has been a privilege teaching you this semester!
Angle-Right Where to go from here:

Angle-Double-Right Hate theory: possibly in your life, most difficult theory course
Angle-Double-Right Dislike theory, love concepts: CS3233 - Competitive Programming, ICPC
Angle-Double-Right Love theory:

CS5339 - Theory and Algorithms for Machine Learning (scarlett)
Algorithms & Theory focus area

https://www.comp.nus.edu.sg/~scarlett/CS5339_notes/

