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CS3230
eric_han@nus.edu.sg

https://eric-han.com

Computer Science

T11 – Week 12

Reductions and Computational Complexity
CS3230 – Design and Analysis of Algorithms
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Admin
1 Tutorial scores will be computed weekly -

Tutorials - Attendance & Participation , please check.
2 Assignment scores will be computed soon / weekly - Assignments - Best Seven ,

please check when it is ready.

Further Explanation
Angle-Right Exchange Argument - Any optimal solution can be converted into greedy optimal

solution.
Angle-Double-Right Intuition is to make the optimal solution ‘unique’.
Angle-Double-Right For our party problem in the assignment, for any optimal party configuration, we can

replace with the latest time 𝑏𝑖.
Angle-Right Optimal Substructure - An optimal solution can be built from optimal solutions of

its subproblems.
Angle-Double-Right Intuition that solving the smaller problems, allows us to solve the any larger problem with

the smaller problem.
Angle-Double-Right For our party problem, the optimal solution to a sub-sequence of students would

contribute directly to the optimal solution of a larger set.
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Lecture Review

Revisiting Time Complexity
Time complexity is actually computed based on the input size.

Angle-Right Example 1: Sorting
Input: 𝑁 (32-bit) Integers.
Input Size: 𝑂(32 ⋅ 𝑁) = 𝑂(𝑁).
Merge sort algorithm runs in 𝑂(𝑁 log 𝑁)
Angle-Double-Right polynomial w.r.t. input size.

Angle-Right Example 2: Fibonacci
Input: One single Integer, which has value 𝑁.
Input Size: 𝑂(log 𝑁) for just that one Integer.
DP algorithm (that sums the last two Fibonacci values) runs in 𝑂(𝑁)
Angle-Double-Right this is not polynomial w.r.t. input size, as there is an exponential gap from log 𝑁 to 𝑁
Angle-Double-Right but it is pseudopolynomial considering the input is 𝑁 and DP runtime as 𝑂(𝑁).
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Reductions
Key Idea: To solve A, maybe we can translate/reduce problem A to B.

Solve_A(instance_of_A):
instance_of_B = translate_A_to_B(instance_of_A)
solution_of_B = Solve_B(instance_of_B)
solution_of_A = translate_B_to_A(solution_of_B)
return solution_of_A

We call this polynomial time reduction if both sub-functions translate_A_to_B and
translate_B_to_A run in polynomial time. This process is denoted as 𝐴 ≤𝑝 𝐵.

Decision vs Optimization Problems
Angle-Right Decision Problem: A problem where the output is Boolean (YES/NO).
Angle-Right Optimization Problem: A problem where we aim to optimize the output.

Synonyms: maximize, minimize, most optimal, longest, shortest, etc.
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Question 1 [G]/[P1]

Graph-Coloring is the problem of assigning colors to vertices of a graph such that no
two adjacent vertices share the same color.

Figure 1: Graph Coloring
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Which statement(s) is/are True?

a. If we can solve the optimization problem for Graph-Coloring in polynomial time,
we can solve the decision problem in polynomial time.

b. If we can solve the decision problem for Graph-Coloring in polynomial time, we
can solve the optimization problem in polynomial time.

c. If the decision problem for Graph-Coloring cannot be solved in polynomial time,
the optimization problem cannot be solved in polynomial time.

d. If the optimization problem for Graph-Coloring cannot be solved in polynomial
time, the decision problem cannot be solved in polynomial time.
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Answer 1a
True: If we can solve the optimization problem, we can solve the decision problem.
Angle-Right Simply determine the minimum number of colors required (chromatic number).
Angle-Right If this minimum is ≤ 𝑘, return YES; otherwise, return NO.

Answer 1b
True: If we can solve the decision problem, we can solve the optimization problem.

Angle-Right Test for increasing color counts until the smallest valid number is found.
Angle-Right A more efficient approach is binary search on the number of colors.

Answer 1c
True: This is the contrapositive1 of (a).

Answer 1d
True: This is the contrapositive of (b).

1The contrapositive of 𝑃 → 𝑄 is ¬𝑄 → ¬𝑃.
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Answer 1a
True: If we can solve the optimization problem, we can solve the decision problem.
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Question 2 [G]/[P2]

Partition versus Ball-Partition:

Angle-Right Partition: Given positive integers 𝑆, can it be split into two subsets with equal sum?
Angle-Double-Right Eg. 𝑆 = {18, 2, 8, 5, 7, 24} → 𝑆1 = {18, 2, 5, 7}, 𝑆2 = {8, 24} (sum = 32).

Angle-Right Ball-Partition: Given 𝑘 balls, can they be evenly split into two boxes? (is 𝑘 even?)
Angle-Double-Right Eg. 𝑘 = 4, Partition as {2, 2}.

Show that Partition ≤𝑝 Ball-Partition using the following transformation 𝐴:

1 From the problem Partition, we are given a set of positive integers 𝑆.
2 Define 𝑘 as the total sum of all integers in 𝑆.
3 Use this number 𝑘 for the Ball-Partition problem.
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What is wrong with this transformation?

a. The transformation does not run in polynomial time.

b. This transformation is correct.

c. A YES solution to 𝐴(𝑆) does not imply a YES solution to 𝑆.

d. A YES solution to 𝑆 does not imply a YES solution to 𝐴(𝑆).
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Answer 2a
False. Transformation 𝐴 only sums the integers in 𝑆, so it runs in polynomial time.

Answer 2b
False. Overall, it is not correct. See below for the argument.

Answer 2c
A YES instance of 𝐴(𝑆) does not imply a YES instance of 𝑆 (True).
Counterexample:

Angle-Right Instance 𝛼: 𝑆 = {1, 7} with sum 1 + 7 = 8.
Angle-Right Transformed into instance 𝛽: 𝐴(𝑆) = 8.
Angle-Right 𝐴(𝑆) = 8 balls can be Ball-Partitioned into {4, 4},
Angle-Right but 𝑆 = {1, 7} is a NO instance of Partition.

Answer 2d
A YES instance of 𝑆 does not imply a YES instance of 𝐴(𝑆) (False).
If Partition has a YES solution (i.e., two subsets sum to half of the total sum),
we can always set the number of balls in each box in Ball-Partition to this half-sum.



Re
du

ct
io

ns
an

d
Co

m
pu

ta
tio

na
lC

om
pl

ex
ity

—
CS

32
30

10/19

Answer 2a
False. Transformation 𝐴 only sums the integers in 𝑆, so it runs in polynomial time.

Answer 2b
False. Overall, it is not correct. See below for the argument.

Answer 2c
A YES instance of 𝐴(𝑆) does not imply a YES instance of 𝑆 (True).
Counterexample:

Angle-Right Instance 𝛼: 𝑆 = {1, 7} with sum 1 + 7 = 8.
Angle-Right Transformed into instance 𝛽: 𝐴(𝑆) = 8.
Angle-Right 𝐴(𝑆) = 8 balls can be Ball-Partitioned into {4, 4},
Angle-Right but 𝑆 = {1, 7} is a NO instance of Partition.

Answer 2d
A YES instance of 𝑆 does not imply a YES instance of 𝐴(𝑆) (False).
If Partition has a YES solution (i.e., two subsets sum to half of the total sum),
we can always set the number of balls in each box in Ball-Partition to this half-sum.



Re
du

ct
io

ns
an

d
Co

m
pu

ta
tio

na
lC

om
pl

ex
ity

—
CS

32
30

10/19
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Question 3 [G]/[P3]

Show Partition ≤𝑝 Knapsack (as in Lecture), using transformation:

Given a Partition instance {𝑤1, 𝑤2, … , 𝑤𝑛} with total sum 𝑆 = ∑𝑛
𝑖=1 𝑤𝑖,

construct a Knapsack instance {(𝑤1, 𝑤1), (𝑤2, 𝑤2), … , (𝑤𝑛, 𝑤𝑛)}
with capacity 𝑊 = 𝑆

2 and threshold 𝑉 = 𝑆
2 .

Which statement(s) is/are True?

a. The transformation runs in polynomial time.

b. A YES answer to the Partition ⟹ a YES answer to the Knapsack.

c. A YES answer to the Knapsack ⟹ a YES answer to the Partition.

d. [G] Is this transformation invertible – Knapsack ≤𝑝 Partition?
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Answer 3a
True.
Angle-Right This reduction runs in poly-time, specifically 𝑂(𝑛 ⋅ log(𝑤max )),
Angle-Right as it simply copies 𝑛 weights to 𝑛 (weight, weight-as-value) pairs.

However,
Angle-Right If the maximum weight 𝑤max = max{𝑤1, 𝑤2, … , 𝑤𝑛} fits in standard 32/64-bit

signed integers,
Angle-Right then log(𝑤max ) is at most 32/64, making the reduction run in 𝑂(𝑛).
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Answer 3b
True. YES-instance for Partition → YES-instance for Knapsack.

Proof
Angle-Right Use one subset, e.g., 𝑆1 (or 𝑆2) from Partition for Knapsack.
Angle-Right Subset 𝑆1 has total weight 𝑆/2 and total value 𝑆/2 (same for 𝑆2).
Angle-Right Thus, it is a YES-instance for Knapsack.



Re
du

ct
io

ns
an

d
Co

m
pu

ta
tio

na
lC

om
pl

ex
ity

—
CS

32
30

14/19

Answer 3c
True. YES-instance for Knapsack → YES-instance for Partition.

Proof
Angle-Right A YES-instance for Knapsack means there exists a subset 𝑍 with weight ≤ 𝑆/2 and

value ≥ 𝑆/2.
Angle-Right Since weight equals value in the transformed instances from 𝛼 to 𝛽,

the only way this can happen is if both the weight and value of 𝑍 are exactly 𝑆/2.
Angle-Right Thus, the same subset 𝑍 (and 𝑇 ∖ 𝑍) can be used as a YES-instance for Partition.
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Question 4

Hamiltonian-Cycle (HC) vs Travelling-Salesperson-Problem (TSP) (as in
Lecture)
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Figure 2: Illustration of Hamiltonian Cycle (left) and TSP Solution (right)

Show that HC ≤𝑝 TSP!
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1 Show the transformation algorithm.

Let 𝐺 = (𝑉 , 𝐸) be an instance 𝛼 of HC.
Construct an instance 𝛽 of TSP:
Angle-Double-Right Create a complete graph 𝐺′ on the same vertices 𝑉.
Angle-Double-Right For each pair 𝑢, 𝑣 ∈ 𝑉:

If (𝑢, 𝑣) ∈ 𝐸, set 𝑤(𝑢, 𝑣) = 1.
Else, set 𝑤(𝑢, 𝑣) = 2 (or any value >1).

Theorem: 𝐺 has a Hamiltonian cycle ⟺ 𝐺′ has a TSP tour of cost at most 𝑛.

2 Show the transformation algorithm runs in polynomial time.

Angle-Double-Right At most 𝑛(𝑛−1)
2 edges are added from 𝐺 to 𝐺′,

Angle-Double-Right This reduction runs in 𝑂(𝑛2).
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3 Show a YES answer to the HC ⟹ a YES answer to the TSP.

Theorem (→): If 𝐺 has a Hamiltonian cycle, then 𝐺′ has a TSP tour of cost at
most 𝑛.

Proof:
Angle-Double-Right Let 𝐶 be a Hamiltonian cycle in 𝐺.
Angle-Double-Right Since 𝐺 is a subgraph of complete graph 𝐺′,
Angle-Double-Right 𝐶 must exist in 𝐺′.
Angle-Double-Right 𝐶 is a valid tour (each vertex appears exactly once).
Angle-Double-Right Each edge in 𝐶 has cost 1 in 𝐺′ (since it exists in 𝐺).
Angle-Double-Right So, the tour cost in 𝐺′ is 𝑛.
Angle-Double-Right Hence, 𝐺′ has a tour of cost at most 𝑛.
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4 Show a YES answer to the TSP ⟹ a YES answer to the HC.

Theorem (←): If 𝐺′ has a TSP tour of cost at most 𝑛, then 𝐺 has a Hamiltonian
cycle.

Proof:
Angle-Double-Right Let 𝐶 be a TSP tour of cost at most 𝑛 in 𝐺′.
Angle-Double-Right Each edge in 𝐺′ has cost ≥ 1.
Angle-Double-Right Since 𝐶 has 𝑛 edges,
Angle-Double-Right each edge must have cost exactly 1.
Angle-Double-Right Thus, each edge in 𝐶 is present in 𝐺.
Angle-Double-Right As 𝐶 visits each vertex exactly once, it is Hamiltonian.
Angle-Double-Right Hence, 𝐺 has a Hamiltonian cycle.
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Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

1 Implement partition_to_knapsack .

2 Fill-in the missing parts for knapsack_solver – populate the DP table.

3 Check that you get this output:

Partition instance [3, 1, 1, 2, 2, 1] is solvable.

https://github.com/eric-vader/nus-cs3230-practical

