

CS3230

eric_han@nus.edu.sg https://eric-han.com

Computer Science

T11 - Week 12

Reductions and Computational Complexity

CS3230 – Design and Analysis of Algorithms

Admin

- Tutorial scores will be computed weekly -Tutorials - Attendance & Participation, please check.
- 2 Assignment scores will be computed soon / weekly Assignments Best Seven, please check when it is ready.

Further Explanation

- **Exchange Argument** Any optimal solution can be converted into greedy optimal solution.
 - >> Intuition is to make the optimal solution 'unique'.
 - \gg For our party problem in the assignment, for any optimal party configuration, we can replace with the latest time b_i .
- **Optimal Substructure** An optimal solution can be built from optimal solutions of its subproblems.
 - >> Intuition that solving the smaller problems, allows us to solve the any larger problem with the smaller problem.
 - >> For our party problem, the optimal solution to a sub-sequence of students would contribute directly to the optimal solution of a larger set.

Revisiting Time Complexity

Time complexity is actually computed based on the input size.

> Example 1: Sorting

Input: N (32-bit) Integers.

Input Size: $O(32 \cdot N) = O(N)$.

Merge sort algorithm runs in $O(N \log N)$

>> polynomial w.r.t. input size.

> Example 2: Fibonacci

Input: One single Integer, which has value N.

Input Size: $O(\log N)$ for just that one Integer.

DP algorithm (that sums the last two Fibonacci values) runs in $\mathcal{O}(N)$

- ightharpoonup this is **not** polynomial w.r.t. input size, as there is an exponential gap from $\log N$ to N
- ightharpoonup but it is **pseudopolynomial** considering the input is N and DP runtime as O(N).

Reductions

Key Idea: To solve **A**, maybe we can translate/reduce problem **A** to **B**.

```
Solve_A(instance_of_A):
    instance_of_B = translate_A_to_B(instance_of_A)
    solution_of_B = Solve_B(instance_of_B)
    solution_of_A = translate_B_to_A(solution_of_B)
    return solution_of_A
```

We call this **polynomial time reduction** if both sub-functions translate_A_to_B and translate_B_to_A run in polynomial time. This process is denoted as $A \leq_p B$.

Decision vs Optimization Problems

- **Decision Problem**: A problem where the output is Boolean (YES/NO).
- **Optimization Problem**: A problem where we aim to optimize the output. Synonyms: maximize, minimize, most optimal, longest, shortest, etc.

GRAPH-COLORING is the problem of assigning colors to vertices of a graph such that no two adjacent vertices share the same color.

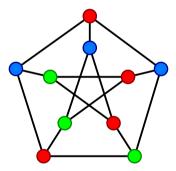


Figure 1: Graph Coloring

Which statement(s) is/are True?

- all f we can solve the **optimization** problem for GRAPH-COLORING in polynomial time, we can solve the **decision** problem in polynomial time.
- If we can solve the **decision** problem for GRAPH-COLORING in polynomial time, we can solve the **optimization** problem in polynomial time.
- If the decision problem for GRAPH-COLORING cannot be solved in polynomial time, the optimization problem cannot be solved in polynomial time.
- d If the optimization problem for GRAPH-COLORING cannot be solved in polynomial time, the decision problem cannot be solved in polynomial time.

True: If we can solve the optimization problem, we can solve the decision problem.

- > Simply determine the **minimum** number of colors required (chromatic number).
- **)** If this minimum is $\leq k$, return **YES**; otherwise, return **NO**.

True: If we can solve the optimization problem, we can solve the decision problem.

- > Simply determine the **minimum** number of colors required (chromatic number).
- ▶ If this minimum is $\leq k$, return **YES**; otherwise, return **NO**.

Answer 1b

True: If we can solve the decision problem, we can solve the optimization problem.

- > Test for increasing color counts until the smallest valid number is found.
- A more efficient approach is **binary search** on the number of colors.

¹The contrapositive of $P \rightarrow Q$ is $\neg Q \rightarrow \neg P$.

True: If we can solve the optimization problem, we can solve the decision problem.

- > Simply determine the **minimum** number of colors required (chromatic number).
- ▶ If this minimum is $\leq k$, return **YES**; otherwise, return **NO**.

Answer 1b

True: If we can solve the decision problem, we can solve the optimization problem.

- > Test for increasing color counts until the smallest valid number is found.
- A more efficient approach is **binary search** on the number of colors.

Answer 1c

True: This is the contrapositive¹ of (a).

¹The contrapositive of $P \to Q$ is $\neg Q \to \neg P$.

True: If we can solve the optimization problem, we can solve the decision problem.

- > Simply determine the **minimum** number of colors required (chromatic number).
- ▶ If this minimum is $\leq k$, return **YES**; otherwise, return **NO**.

Answer 1b

True: If we can solve the decision problem, we can solve the optimization problem.

- > Test for increasing color counts until the smallest valid number is found.
- A more efficient approach is **binary search** on the number of colors.

Answer 1c

True: This is the contrapositive of (a).

Answer 1d

True: This is the contrapositive of (b).

¹The contrapositive of $P \to Q$ is $\neg Q \to \neg P$.

PARTITION versus BALL-PARTITION:

- \rightarrow Partition: Given positive integers S, can it be split into two subsets with equal sum?
 - **>>** Eg. $S = \{18, 2, 8, 5, 7, 24\} \rightarrow S_1 = \{18, 2, 5, 7\}, S_2 = \{8, 24\}$ (sum = 32).
- **Ball-Partition**: Given k balls, can they be evenly split into two boxes? (is k even?)
 - \gg Eg. k=4, Partition as $\{2,2\}$.

Show that Partition \leq_p Ball-Partition using the following transformation A:

- \blacksquare From the problem Partition, we are given a set of positive integers S.
- \square Define k as the total sum of all integers in S.
- \blacksquare Use this number k for the Ball-Partition problem.

What is wrong with this transformation?

- a. The transformation does not run in polynomial time.
- **b.** This transformation is correct.
- \blacksquare A YES solution to A(S) does not imply a YES solution to S.
- \blacksquare A YES solution to S does not imply a YES solution to A(S).

Answer 2a **False.** Transformation A only sums the integers in S, so it runs in polynomial time. Answer 2a False. Transformation A only sums the integers in S, so it runs in polynomial time.

Answer 2b

False. Overall, it is not correct. See below for the argument.

An: Fal An: An: An: Cou

Answer 2a

False. Transformation A only sums the integers in S, so it runs in polynomial time.

Answer 2b

False. Overall, it is not correct. See below for the argument.

Answer 2c

A YES instance of A(S) does **not** imply a YES instance of S (**True**).

- Counterexample: $S = \{1, 7\}$ with sum 1 + 7 = 8.
 - Transformed into instance β : A(S) = 8.
 - ightharpoonup A(S)=8 balls can be BALL-PARTITIONED into $\{4,4\}$,
 - but $S = \{1, 7\}$ is a NO instance of PARTITION.

Answer 2a False. Transformation A only sums the integers in S, so it runs in polynomial time.

Answer 2b

False. Overall, it is not correct. See below for the argument.

Answer 2c

Counterexample:

- Instance α : $S = \{1, 7\}$ with sum 1 + 7 = 8.
 Transformed into instance β : A(S) = 8.
- A(S) = 8 balls can be BALL-PARTITIONED into $\{4, 4\}$,
- but $S = \{1, 7\}$ is a NO instance of Partition.

Answer 2d

A YES instance of S does **not** imply a YES instance of A(S) (False).

A YES instance of A(S) does **not** imply a YES instance of S (**True**).

If Partition has a YES solution (i.e., two subsets sum to half of the total sum), we can always set the number of balls in each box in Ball-Partition to this half-sum.

Show Partition $\leq_n \text{Knapsack}$ (as in Lecture), using transformation:

Given a Partition instance $\{w_1,w_2,\ldots,w_n\}$ with total sum $S=\sum_{i=1}^n w_i$, construct a Knapsack instance $\{(w_1,w_1),(w_2,w_2),\ldots,(w_n,w_n)\}$ with capacity $W=\frac{S}{2}$ and threshold $V=\frac{S}{2}$.

Which statement(s) is/are True?

- a. The transformation runs in polynomial time.
- **b** A YES answer to the Partition \implies a YES answer to the Knapsack.
- \blacksquare A YES answer to the KNAPSACK \implies a YES answer to the PARTITION.
- **■** [G] Is this transformation invertible KNAPSACK \leq_p PARTITION?

Answer 3a

- True.
 - ightharpoonup This reduction runs in poly-time, specifically $O(n \cdot \log(w_{\max}))$,
 - ightharpoonup as it simply copies n weights to n (weight, weight-as-value) pairs.

However.

- If the maximum weight $w_{\max} = \max\{w_1, w_2, \dots, w_n\}$ fits in standard 32/64-bit signed integers.
- then $\log(w_{\text{max}})$ is at most 32/64, making the reduction run in O(n).

Answer 3b

True. YES-instance for Partition \rightarrow YES-instance for Knapsack.

Proof

- \blacktriangleright Use one subset, e.g., S_1 (or S_2) from Partition for Knapsack.
- ▶ Subset S_1 has total weight S/2 and total value S/2 (same for S_2).
- \blacktriangleright Thus, it is a YES-instance for $\mathrm{KNAPSACK}.$

CS3230

Reductions and Computational Complexity

Answer 3c

True. YES-instance for KNAPSACK \rightarrow YES-instance for PARTITION.

Proof

- ightharpoonup A YES-instance for KNAPSACK means there exists a subset Z with weight $\leq S/2$ and value $\geq S/2$.
- \triangleright Since weight equals value in the transformed instances from α to β , the only way this can happen is if both the weight and value of Z are exactly S/2.
- \blacktriangleright Thus, the same subset Z (and $T\setminus Z$) can be used as a YES-instance for PARTITION.

Hamiltonian-Cycle (HC) vs Travelling-Salesperson-Problem (TSP) (as in Lecture)

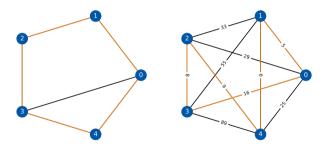


Figure 2: Illustration of Hamiltonian Cycle (left) and TSP Solution (right)

Show that $HC \leq_n TSP!$

Show the transformation algorithm.

Let G = (V, E) be an instance α of HC. Construct an instance β of TSP:

- \rightarrow Create a complete graph G' on the same vertices V.
- \Rightarrow For each pair $u, v \in V$:
 - If $(u, v) \in E$, set w(u, v) = 1.
 - \blacksquare Else, set w(u,v)=2 (or any value >1).

Theorem: G has a Hamiltonian cycle \iff G' has a TSP tour of cost at most n.

- **2** Show the transformation algorithm runs in polynomial time.
 - \Rightarrow At most $\frac{n(n-1)}{2}$ edges are added from G to G',
 - **>>** This reduction runs in $O(n^2)$.

Theorem (\rightarrow): If G has a Hamiltonian cycle, then G' has a TSP tour of cost at most n.

Proof:

- \gg Let C be a Hamiltonian cycle in G.
- ightharpoonup Since G is a subgraph of complete graph G',
- \gg C must exist in G'.
- \rightarrow C is a valid tour (each vertex appears exactly once).
- \gg Each edge in C has cost 1 in G' (since it exists in G).
- \gg So, the tour cost in G' is n.
- \gg Hence, G' has a tour of cost at most n.

 \blacksquare Show a YES answer to the TSP \implies a YES answer to the HC.

Theorem (\leftarrow): If G' has a TSP tour of cost at most n, then G has a Hamiltonian cycle.

Proof:

- ightharpoonup Let C be a TSP tour of cost at most n in G'.
- **>>** Each edge in G' has cost ≥ 1 .
- \gg Since C has n edges,
- >> each edge must have cost exactly 1.
- \gg Thus, each edge in C is present in G.
- \gg As C visits each vertex exactly once, it is Hamiltonian.
- \gg Hence, G has a Hamiltonian cycle.

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

- Implement partition_to_knapsack.
- 2 Fill-in the missing parts for knapsack_solver populate the DP table.
- Check that you get this output:

Partition instance [3, 1, 1, 2, 2, 1] is solvable.