CS3230

eric_han@nus.edu.sg

? NUS | Computing https://eric-han.com

National University i
of Singapore Computer Science

T11 — Week 12

Reductions and Computational Complexity
CS53230 — Design and Analysis of Algorithms


mailto:eric_han@nus.edu.sg
https://eric-han.com

Admin

Tutorial scores will be computed weekly -
Tutorials - Attendance & Participation, please check.

Assignment scores will be computed soon / weekly - Assignments - Best Seven,
please check when it is ready.

Further Explanation

> Exchange Argument - Any optimal solution can be converted into greedy optimal
solution.
> Intuition is to make the optimal solution ‘unique’.
> For our party problem in the assignment, for any optimal party configuration, we can
replace with the latest time b;.
> Optimal Substructure - An optimal solution can be built from optimal solutions of
its subproblems.
»> Intuition that solving the smaller problems, allows us to solve the any larger problem with
the smaller problem.
» For our party problem, the optimal solution to a sub-sequence of students would
contribute directly to the optimal solution of a larger set.

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
[}
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Lo}
o

2/19



Lecture Review

Revisiting Time Complexity
Time complexity is actually computed based on the input size.
> Example 1: Sorting
Input: N (32-bit) Integers.
Input Size: O(32- N) = O(N).
Merge sort algorithm runs in O(Nlog N)
» polynomial w.r.t. input size.
> Example 2: Fibonacci
Input: One single Integer, which has value V.
Input Size: O(log N) for just that one Integer.
DP algorithm (that sums the last two Fibonacci values) runs in O(N)

> this is not polynomial w.r.t. input size, as there is an exponential gap from log N to N
% but it is pseudopolynomial considering the input is N and DP runtime as O(N).

o
o
o
o™
wn
|©)]
>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

3/19



Reductions
Key Idea: To solve A, maybe we can translate/reduce problem A to B.

Solve_A(instance_of_A):
instance_of B = translate_A_to_B(instance_of_A)
solution_of B = Solve_B(instance_of_B)
solution_of A = translate B_to_A(solution_of_B)
return solution_of_ A

CS3230 m——— ]

We call this polynomial time reduction if both sub-functions translate_A_to_B and
translate_B_to_A run in polynomial time. This process is denoted as A <, B.

Decision vs Optimization Problems
> Decision Problem: A problem where the output is Boolean (YES/NO).
> Optimization Problem: A problem where we aim to optimize the output.
Synonyms: maximize, minimize, most optimal, longest, shortest, etc.

>
b=
X
<
[N
£
o
O]
=
c
o
2
[}
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Lo}
o

4/19



Question 1 [G]/[P1]

GRAPH-COLORING is the problem of assigning colors to vertices of a graph such that no
two adjacent vertices share the same color.

CS3230 w7

Figure 1: Graph Coloring

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
o
O
o
c
©
wn
c
o
2
9]
=}
o
Q
o

5/19



Which statement(s) is/are True?

B If we can solve the optimization problem for GRAPH-COLORING in polynomial time,
we can solve the decision problem in polynomial time.

B If we can solve the decision problem for GRAPH-COLORING in polynomial time, we
can solve the optimization problem in polynomial time.

If the decision problem for GRAPH-COLORING cannot be solved in polynomial time,
the optimization problem cannot be solved in polynomial time.

El If the optimization problem for GRAPH-COLORING cannot be solved in polynomial
time, the decision problem cannot be solved in polynomial time.

>
b=
X
<
[N
£
o
O]
=
c
o
2
[}
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Lo}
o

6/19



Answer 1la

True: If we can solve the optimization problem, we can solve the decision problem.
> Simply determine the minimum number of colors required (chromatic number).
> If this minimum is < k, return YES; otherwise, return NO.

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

7/19



>
b=
X
<
[N
£
(e}
O]
=
c
o
2
[}
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Lo}
o

Answer la

True: If we can solve the optimization problem, we can solve the decision problem.

> Simply determine the minimum number of colors required (chromatic number).
> If this minimum is < k, return YES; otherwise, return NO.

Answer 1b

True: If we can solve the decision problem, we can solve the optimization problem.

> Test for increasing color counts until the smallest valid number is found.
> A more efficient approach is binary search on the number of colors.

1The contrapositive of P — Q is =Q — —P.

7/19



>
b=
X
<
[N
£
o
O]
=
c
o
2
[}
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Lo}
o

Answer la

True: If we can solve the optimization problem, we can solve the decision problem.

> Simply determine the minimum number of colors required (chromatic number).
> If this minimum is < k, return YES; otherwise, return NO.

Answer 1b

True: If we can solve the decision problem, we can solve the optimization problem.

> Test for increasing color counts until the smallest valid number is found.
> A more efficient approach is binary search on the number of colors.

Answer 1c
True: This is the contrapositive® of (a).

1The contrapositive of P — Q is =Q — —P.

7/19



>
b=
X
<
[N
£
o
O]
=
c
o
2
[}
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Lo}
o

Answer la

True: If we can solve the optimization problem, we can solve the decision problem.

> Simply determine the minimum number of colors required (chromatic number).
> If this minimum is < k, return YES; otherwise, return NO.

Answer 1b

True: If we can solve the decision problem, we can solve the optimization problem.

> Test for increasing color counts until the smallest valid number is found.
> A more efficient approach is binary search on the number of colors.

Answer 1c
True: This is the contrapositive® of (a).

Answer 1d
True: This is the contrapositive of (b).

1The contrapositive of P — Q is =Q — —P.

7/19



Question 2 [G]/[P2]

PARTITION versus BALL-PARTITION:
> Partition: Given positive integers S, can it be split into two subsets with equal sum?
» Eg. S ={18,2,8,5,7,24} — S, = {18,2,5,7}, 5, = {8,24} (sum = 32).
> Ball-Partition: Given k balls, can they be evenly split into two boxes? (is k even?)
» Eg. k =4, Partition as {2, 2}.
Show that PARTITION <, BALL-PARTITION using the following transformation A:

From the problem PARTITION, we are given a set of positive integers S.
Define k as the total sum of all integers in S.
Use this number k for the BALL-PARTITION problem.

o
o
o
o™
wn
|©)]
>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

8/19



CS3230 (]

What is wrong with this transformation?
Bl The transformation does not run in polynomial time.
B This transformation is correct.
A YES solution to A(S) does not imply a YES solution to S.
Bl A YES solution to S does not imply a YES solution to A(S).

>
b=
X
<

[N
£
(e}
O]
=
c
o
2
(o]
s
3

o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

9/19



Answer 2a
False. Transformation A only sums the integers in .S, so it runs in polynomial time.

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
o
O
e
c
(]
wn
c
o
2
9]
=]
o
Q
o

10/19



Answer 2a
False. Transformation A only sums the integers in .S, so it runs in polynomial time.

Answer 2b
False. Overall, it is not correct. See below for the argument.

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
o
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

10/19



o
o
o
o™
wn
|©)]
>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

Answer 2a

False. Transformation A only sums the integers in .S, so it runs in polynomial time.

Answer 2b
False. Overall, it is not correct. See below for the argument.

Answer 2c
A YES instance of A(S) does not imply a YES instance of S (True).
Counterexample:

> Instance az S = {1,7} with sum 147 = 8.

> Transformed into instance §: A(S) = 8.

> A(S) = 8 balls can be BALL-PARTITIONED into {4,4},

> but S ={1,7} is a NO instance of PARTITION.

10/19



o
o
o
o™
wn
|©)]
>
b=
X
<
[N
£
(e}
O]
=
c
o
2
[}
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Lo}
o

Answer 2a
False. Transformation A only sums the integers in .S, so it runs in polynomial time.

Answer 2b
False. Overall, it is not correct. See below for the argument.

Answer 2c
A YES instance of A(S) does not imply a YES instance of S (True).
Counterexample:

> Instance az S = {1,7} with sum 147 = 8.

> Transformed into instance §: A(S) = 8.

> A(S) = 8 balls can be BALL-PARTITIONED into {4,4},

> but S ={1,7} is a NO instance of PARTITION.

Answer 2d

A YES instance of S does not imply a YES instance of A(S) (False).

If PARTITION has a YES solution (i.e., two subsets sum to half of the total sum),

we can always set the number of balls in each box in BALL-PARTITION to this half-sum.
10/19



Question 3 [G]/[P3]

Show PARTITION <, KNAPSACK (as in Lecture), using transformation:

Given a PARTITION instance {w,, w,, ... ,w,, } with total sum S = Z::l w;,
construct a KNAPSACK instance {(wy,w;), (wy, ws), ..., (w,,w,)}
with capacity W = g and threshold V = g

Which statement(s) is/are True?
Bl The transformation runs in polynomial time.
B A YES answer to the PARTITION = a YES answer to the KNAPSACK.
A YES answer to the KNAPSACK = a YES answer to the PARTITION.

ER [G] Is this transformation invertible — KNAPSACK <, PARTITION?

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

11/19



o
o
o
o™
wn
|©)]
>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
o
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

Answer 3a
True.
> This reduction runs in poly-time, specifically O(n - log(w,,,. )),
> as it simply copies n weights to n (weight, weight-as-value) pairs.
However,
> If the maximum weight w,,,, = max{w,,w,, ..., w, } fits in standard 32/64-bit
signed integers,
> then log(w,,,, ) is at most 32/64, making the reduction run in O(n).

12/19



CS3230 [m— ]

Answer 3b
True. YES-instance for PARTITION — YES-instance for KNAPSACK.

Proof
> Use one subset, e.g., S; (or Sy) from PARTITION for KNAPSACK.
> Subset S; has total weight S/2 and total value S/2 (same for S,).
> Thus, it is a YES-instance for KNAPSACK.

>
b=
X
<

[N
£
(e}
O]
=
c
o
2
(o]
s
3

o
£
o
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

13/19



CS3230 [m— ]

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

Answer 3c
True. YES-instance for KNAPSACK — YES-instance for PARTITION.

Proof
> A YES-instance for KNAPSACK means there exists a subset Z with weight < S/2 and
value > S/2.
> Since weight equals value in the transformed instances from « to f,
the only way this can happen is if both the weight and value of Z are exactly S/2.
> Thus, the same subset Z (and 1"\ Z) can be used as a YES-instance for PARTITION.

14/19



Question 4

HAMILTONIAN-CYCLE (HC) vs TRAVELLING-SALESPERSON-PROBLEM (TSP) (as in
Lecture)

Figure 2: Illustration of Hamiltonian Cycle (left) and TSP Solution (right)

Show that HC gp TSP!

o
o
o
o™
wn
|©)]
>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
o
O
o
c
©
wn
c
o
2
9]
=}
o
Q
o

15/19



Show the transformation algorithm.

Let G = (V, E) be an instance « of HC,
Construct an instance § of TSP:

» Create a complete graph G’ on the same vertices V.
» For each pair u,v € V-

m If (u,v) € E, set w(u,v) =1.

m Else, set w(u,v) =2 (or any value >1).

Theorem: G has a Hamiltonian cycle <= G’ has a TSP tour of cost at most n.

Show the transformation algorithm runs in polynomial time.

» At most % edges are added from G to G/,

 This reduction runs in O(n?).

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

16/19



Show a YES answer to the HC — a YES answer to the TSP.

Theorem (—): If G has a Hamiltonian cycle, then G’ has a TSP tour of cost at
most n.

Proof:

» Let C be a Hamiltonian cycle in G.

% Since G is a subgraph of complete graph G’,

» C must exist in G’.

» ('is a valid tour (each vertex appears exactly once).
% Each edge in C has cost 1 in G’ (since it exists in G).
» So, the tour cost in G’ is n.

» Hence, G’ has a tour of cost at most n.

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

17/19



B Show a YES answer to the TSP — a YES answer to the HC.

Theorem (<): If G’ has a TSP tour of cost at most n, then G has a Hamiltonian
cycle.

Proof:

» Let C be a TSP tour of cost at most n in G’

» Each edge in G’ has cost > 1.

» Since C has n edges,

» each edge must have cost exactly 1.

» Thus, each edge in C'is present in G.

» As C visits each vertex exactly once, it is Hamiltonian.
» Hence, G has a Hamiltonian cycle.

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
(o]
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

18/19



Practical [Optional]

CS3230 [m——

Practical repo: To help you further your understanding, not compulsory; Work for Snack!
Implement partition_to_knapsack .
Fill-in the missing parts for knapsack_solver — populate the DP table.
Check that you get this output:

Partition instance [3, 1, 1, 2, 2, 1] is solvable.

>
b=
X
<
[N
£
(e}
O]
=
c
o
2
(o]
s
3
o
£
o
O
e
c
(]
wn
c
o
2
(%}
=]
o
Q
o

19/19


https://github.com/eric-vader/nus-cs3230-practical

