
G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

1/24

CS3230
eric_han@nus.edu.sg

https://eric-han.com

Computer Science

T09 – Week 10

Greedy Algorithms
CS3230 – Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com


G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

2/24

Admin

1 Midterm scripts returned via Softmark and the time for script review had passed.
2 No Monday Week 11 tutorials (TG01-09, TG19) due to Hari Raya Puasa. Please

watch the pre-recorded tutorial instead, available from Monday, 9am on Canvas >
Videos/Panopto > Tutorials. All Tuesday tutorials will proceed as scheduled.

3 Free attendance is granted for all Week 11 Monday sessions. (Tuesday sessions had
received their free attendance in Week 3.)



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

3/24

Lecture Review

Greedy Algorithms solve problems by making a greedy choice and solving the remaining
subproblem.

1 Prove1 that an optimal solution always makes the greedy choice (often using an
exchange argument).

2 Use optimal substructure to show that combining the greedy choice with an
optimal subproblem solution yields an optimal solution (often by contradiction).

This tutorial covers more greedy algorithm examples beyond those in lectures.

1In theory courses like CS3230, this is crucial. In programming competitions, ‘faith’ in their ‘greedy
choice’, implement it, and hope it passes.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

4/24

Burning CDs

Bob wants to burn music files onto CDs2:

Angle-Right Each CD has 100 MB capacity.
Angle-Right At most two files per CD3.
Angle-Right Files cannot be split across CDs.
Angle-Right Given a set 𝐴 of file sizes (< 100 MB), define 𝑀𝑖𝑛𝐶𝐷(𝐴) as the minimum number

of CDs needed.

Bob wants to use the least number of CDs to fit his music collection.

2If unfamiliar, see this guide.
3A necessary constraint for a greedy solution.

https://www.wikihow.com/Burn-a-CD


G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

5/24

Question 1 [G]/[P1]

Which of the following correctly describes an optimal substructure property of the problem,
assuming that at least one pair of files fit into a CD?

a. For any pair of files 𝑓1, 𝑓2 in 𝐴,

b. For any pair of files 𝑓1, 𝑓2 in 𝐴 that belong on a single CD in an optimal solution,

c. If 𝑓1 and 𝑓2 are the largest and smallest files in 𝐴,

𝑀𝑖𝑛𝐶𝐷(𝐴) = 1 + 𝑀𝑖𝑛𝐶𝐷(𝐴\{𝑓1, 𝑓2}) (1)



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

6/24

Answer 1a
This approach fails—we cannot simply pair any two files and expect an optimal solution.
Counterexample: Given 𝐴 = {10, 20, 80, 90},
Angle-Right Optimal solution: {10, 90}, {20, 80} → 2 CDs
Angle-Right Using eq. 1 with wrong pairing (𝑓1 = 10, 𝑓2 = 20) gives:

1 + 𝑀𝑖𝑛𝐶𝐷({80, 90}) = 1 + 2 = 3,

which is incorrect since {80, 90} needs 2 CDs.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

7/24

Answer 1b
This is correct. In any optimal solution:

1 Remove any pair stored in the same CD in the optimal solution (say first CD).
2 The remaining files must be stored optimally—otherwise, a better allocation exists,

contradicting optimality.

Figure 1: Optimal substructure illustration



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

8/24

Answer 1c
This fails because the largest file (𝑓1) and smallest file (𝑓2) may exceed 100 MB and
cannot fit on a single CD.
Counterexample: 𝐴 = {10, 20, 30, 95, 99},
Angle-Right Optimal solution: {10, 20}, {30}, {95}, {99} → 4 CDs (cannot be improved).
Angle-Right Using eq. 1 with 𝑓1 = 99, 𝑓2 = 10 gives:

1 + 𝑀𝑖𝑛𝐶𝐷({20, 30, 95}) = 1 + 2 = 3,

which is impossible since 𝑓1 and 𝑓2 do not fit on a single CD.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

9/24

Question 2 [G]/[P2]

Assume any optimal solution contains a pair on a CD.
Select all True statements:

a. The smallest file 𝑓 must be paired in some optimal solution.

b. The pair {𝑓1, 𝑓2}, where 𝑓1 is the smallest file and 𝑓2 is the largest file that fits
with 𝑓1 on one CD, must appear in some optimal solution.

c. The pair {𝑓1, 𝑓2}, where 𝑓1 is the smallest file and 𝑓2 is the largest file, must appear
in some optimal solution.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

10/24

Answer 2a
True. Some optimal solution includes the smallest file 𝑓 (if a pair exists):
Angle-Right If the smallest file 𝑓 is already in a pair, we are done.
Angle-Right Otherwise, swap 𝑓 with any file 𝑎 from an optimal pair {𝑎, 𝑏} (exchange argument).

Angle-Double-Right Since 𝑓 ≤ 𝑎, if 𝑎 + 𝑏 ≤ 100 MB, then 𝑓 + 𝑏 ≤ 100 MB.
Angle-Double-Right The total number of CDs used remains unchanged.

Figure 2: Smallest file in a pair



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

11/24

Answer 2b
True. From (2a), smallest file 𝑓1 that is paired with some file (if a pair exists):
Angle-Right If 𝑓1 (smallest) is paired with 𝑓2 (largest that fits), we are done.
Angle-Right Otherwise, if paired with 𝑓3 (some other file), swap it with 𝑓2 (exchange argument).

1 If 𝑓2 was unpaired, the solution remains optimal.
2 If 𝑓2 was paired with 𝑓4 ({𝑓1, 𝑓3} and {𝑓2, 𝑓4} fit in 2 CDs), the swap is valid since

𝑓2 > 𝑓3 ({𝑓1, 𝑓2} and {𝑓3, 𝑓4} also fit in 2 CDs).
Thus, an optimal solution exists where 𝑓2 is paired with the smallest file 𝑓1.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

12/24

Figure 3: Smallest and largest (that fits) fit in a pair



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

13/24

Answer 2c
False. Same argument as 1c. The problem is the “largest file”.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

14/24

Question 3 [G]/[P2]

Derive the greedy algorithm for obtaining the minimum number of CDs that Bob needs to
burn his music files and apply it to this array of file sizes 𝐴 = {89, 74, 81, 12, 7, 91}, what
is the output of 𝑀𝑖𝑛𝐶𝐷(𝐴) for this test case?



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

15/24

Answer
1 Sort the file sizes

Angle-Double-Right Use a sorting algorithm (𝑂(𝑛 log 𝑛)) or Counting Sort (𝑂(𝑛)).
2 Initialize two pointers

Angle-Double-Right Let forward point to the smallest file (𝐴1),
Angle-Double-Right and backward point to the largest file (𝐴𝑛).
Angle-Double-Right Set num_cds = 0 to track the CDs used.

3 Pair smallest and largest files greedily
Angle-Double-Right If 𝐴forward + 𝐴backward ≤ 100 MB, store them together and move both pointers.
Angle-Double-Right Otherwise, store 𝐴backward alone and move only the right pointer.

4 Repeat until pointers meet
Angle-Double-Right Continue advancing forward and retreating backward until all files are stored.

5 Return total CDs used

Remarks
Interested students can try implementing a similar greedy algorithm with these problems:
Angle-Right UVa 410 - Station Balance

https://onlinejudge.org/external/4/410.pdf


G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

16/24

For 𝐴 = {89, 74, 81, 12, 7, 91}, we have the following trace:

Remaining Files [𝐴forward, ⋯ , 𝐴backward] Pair CDs Used

0 [7, 12, 74, 81, 89, 91] {91, 7} 1
1 [12, 74, 81, 89] {89} 2
2 [12, 74, 81] {81, 12} 3
3 [74] {74} 4

Note: Pairings are not required but can easily be tracked.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

17/24

We illustrate using a larger set 𝐴 = {89, 59, 32, 74, 81, 12, 7, 49, 43, 51, 62, 91, 27}:

Remaining Files [𝐴forward, ⋯ , 𝐴backward] Pair CDs Used

0 [7, 12, 27, 32, 43, 49, 51, 59, 62, 74, 81, 89, 91] {91, 7} 1
1 [12, 27, 32, 43, 49, 51, 59, 62, 74, 81, 89] {89} 2
2 [12, 27, 32, 43, 49, 51, 59, 62, 74, 81] {81, 12} 3
3 [27, 32, 43, 49, 51, 59, 62, 74] {74} 4
4 [27, 32, 43, 49, 51, 59, 62] {27, 62} 5
5 [32, 43, 49, 51, 59] {32, 59} 6
6 [43, 49, 51] {51, 43} 7
7 [49] {49} 8



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

18/24

Activity Selection
Your task is to find the largest subset of mutually compatible activities:

Angle-Right Given a set of activities 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛}.
Angle-Right Each activity occurs within [𝑠𝑖, 𝑓𝑖) (start time inclusive, finish time exclusive).
Angle-Right Two activities 𝑎𝑖 and 𝑎𝑗 are compatible if their intervals do not overlap:

Angle-Double-Right 𝑠𝑖 ≥ 𝑓𝑗 (i.e., 𝑎𝑖 starts after 𝑎𝑗 finishes), or
Angle-Double-Right 𝑠𝑗 ≥ 𝑓𝑖 (i.e., 𝑎𝑗 starts after 𝑎𝑖 finishes).

Example

0 5 10 15 20

a1 a2

a3

Figure 4: Activity intervals for 𝑎1 = [3, 10), 𝑎2 = [15, 20), and 𝑎3 = [5, 15).

Angle-Right Compatible sets: {𝑎1, 𝑎2} or {𝑎2, 𝑎3} (both optimal).
Angle-Right Incompatible set: {𝑎1, 𝑎3}.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

19/24

Question 4 [G]

Which of these greedy strategy (or strategies) work for the activity selection problem?

a. Choose the activity 𝑎 that starts last, remove conflicting activities, and recurse.

b. Choose the activity 𝑎 that ends last, remove conflicting activities, and recurse.

c. Choose the shortest activity 𝑎, remove conflicting activities, and recurse.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

20/24

Answer 4a
Correct, see the details in the next question!

Answer 4b
Wrong, counterexample: 𝑎1 = [1, 10), 𝑎2 = [1, 5), 𝑎3 = [6, 9).

Angle-Right Choosing 𝑎1 (which ends last) blocks all other choices, leading to a suboptimal
solution.

Angle-Right Optimal solution: {𝑎2, 𝑎3}.

Answer 4c
Wrong. Counterexample: 𝑎1 = [1, 4), 𝑎2 = [3, 5), 𝑎3 = [4, 10).

Angle-Right Choosing 𝑎2 (the shortest activity) blocks all other choices, leading to a suboptimal
solution.

Angle-Right Optimal solution: {𝑎1, 𝑎3}.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

20/24

Answer 4a
Correct, see the details in the next question!

Answer 4b
Wrong, counterexample: 𝑎1 = [1, 10), 𝑎2 = [1, 5), 𝑎3 = [6, 9).

Angle-Right Choosing 𝑎1 (which ends last) blocks all other choices, leading to a suboptimal
solution.

Angle-Right Optimal solution: {𝑎2, 𝑎3}.

Answer 4c
Wrong. Counterexample: 𝑎1 = [1, 4), 𝑎2 = [3, 5), 𝑎3 = [4, 10).

Angle-Right Choosing 𝑎2 (the shortest activity) blocks all other choices, leading to a suboptimal
solution.

Angle-Right Optimal solution: {𝑎1, 𝑎3}.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

20/24

Answer 4a
Correct, see the details in the next question!

Answer 4b
Wrong, counterexample: 𝑎1 = [1, 10), 𝑎2 = [1, 5), 𝑎3 = [6, 9).

Angle-Right Choosing 𝑎1 (which ends last) blocks all other choices, leading to a suboptimal
solution.

Angle-Right Optimal solution: {𝑎2, 𝑎3}.

Answer 4c
Wrong. Counterexample: 𝑎1 = [1, 4), 𝑎2 = [3, 5), 𝑎3 = [4, 10).

Angle-Right Choosing 𝑎2 (the shortest activity) blocks all other choices, leading to a suboptimal
solution.

Angle-Right Optimal solution: {𝑎1, 𝑎3}.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

21/24

Question 5

Derive the greedy algorithm for the Activity Selection Problem.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

22/24

Answer

Optimal Substructure
Suppose an optimal schedule 𝑆 includes activity 𝑎𝑗:
Angle-Right 𝐵𝑒𝑓𝑜𝑟𝑒𝑗 = {𝑎𝑖 ∣ 𝑓𝑖 ≤ 𝑠𝑗} (activities finishing before 𝑎𝑗 starts).
Angle-Right 𝐴𝑓𝑡𝑒𝑟𝑗 = {𝑎𝑖 ∣ 𝑠𝑖 ≥ 𝑓𝑗} (activities starting after 𝑎𝑗 ends).

Then, 𝑆 must also contain an optimal schedule for 𝐵𝑒𝑓𝑜𝑟𝑒𝑗 and an optimal schedule for
𝐴𝑓𝑡𝑒𝑟𝑗. This can be proven by contradiction.

Greedy Choice Property
Greedily selecting the activity 𝑎 that starts last works. Any optimal solution can be
modified (using an exchange argument) to include the activity that starts last:
Angle-Right If an optimal schedule 𝑆 originally contained some latest-starting activity 𝑎,

it can always be replaced with 𝑎∗ while maintaining compatibility and the same
number of selected activities.

Angle-Right This guarantees that selecting 𝑎∗ is optimal.



G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

23/24

Greedy Algorithm
1 Sort the activities by start time in non-decreasing order (if not already sorted).

Angle-Double-Right Sorting takes Θ(𝑛 log 𝑛), but once sorted, the algorithm runs in 𝑂(𝑛).
2 Initialize an empty schedule 𝑆.
3 Iterate through the activities in reverse order (starting from the last activity):

Angle-Double-Right Select the latest-starting activity 𝑎∗ that is compatible with the current schedule 𝑆.
Angle-Double-Right Add 𝑎∗ to 𝑆.

4 Return the final schedule 𝑆 as the largest set of compatible activities.

Remarks
Interested students can try implementing a similar greedy algorithm with these problems:
Angle-Right Kattis - Classrooms
Angle-Right LeetCode - Non-Overlapping Intervals

https://open.kattis.com/problems/classrooms
https://leetcode.com/problems/non-overlapping-intervals/description/


G
re

ed
y

A
lg

or
ith

m
s

—
CS

32
30

24/24

Practical [Optional]

LeetCode - Non-Overlapping Intervals is highly similar to our Activity Selection problem.

1 Solve this LeetCode problem!
2 See others Greedy - LeetCode

https://leetcode.com/problems/non-overlapping-intervals/description/
https://leetcode.com/problem-list/greedy/

