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T08 – Week 9

Post-Midterm Exam Discussion
CS3230 – Design and Analysis of Algorithms
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Admin
Angle-Right TG19 stats: mean: 22.07, median: 21.75, 25th: 16.5, 75th: 28.5
Angle-Right Course stats: mean: 21.27, median: 19.75, 25th: 15, 75th: 26.5
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Figure 1: MCQ Correctness Statistics from course.
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Question A.1 [P1]

𝑛10 − 𝑛9 is in

A Ω(𝑛11)

B 𝑜(𝑛10)

C Θ(𝑛9)

D 𝑂(𝑛8)

E None of the above

Solution
Since lim𝑛→∞

𝑛10−𝑛9

𝑛10 = lim𝑛→∞ (1 − 1
𝑛) = 1 ⟹ 𝑛10 − 𝑛9 ∈ Θ(𝑛10), the correct

answer is None of the above.
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Question A.2

(𝑛 + 1)! is in

A 𝑂(𝑛!)

B 𝜔(𝑛!)

C Θ(𝑛!)

D 𝑜(𝑛!)

E None of the above

Solution
lim𝑛→∞

(𝑛+1)!
𝑛! = lim𝑛→∞(𝑛 + 1) = ∞ ⟹ (𝑛 + 1)! ∈ 𝜔(𝑛!).
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Question A.3

2log3 𝑛 is in

A 𝑂(log2 𝑛)

B Θ(𝑛2)

C 𝜔(𝑛)

D Ω(
√

𝑛)

E None of the above

Solution
2log3 𝑛 = 𝑛log3 2 = 𝑛0.6309…, so options A, B, and C are incorrect. We check for D:
lim𝑛→∞

2log3 𝑛
√

𝑛 = lim𝑛→∞
𝑛log3 2

𝑛1/2 = lim𝑛→∞ 𝑛log3 2−1/2 = ∞ ⟹ 2log3 𝑛 ∈ Ω(
√

𝑛).
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Question A.4

Suppose 𝑓(𝑛) ∈ Θ(𝑛2(log 𝑛)5) and 𝑔(𝑛) ∈ Θ(𝑛5(log 𝑛)2). Then, 𝑓(𝑛) + 𝑔(𝑛) is in

A Θ(𝑛5(log 𝑛)5)

B Θ(𝑛2(log 𝑛)5)

C Θ(𝑛5(log 𝑛)2)

D Θ(𝑛7(log 𝑛)7)

E None of the above

Solution
lim𝑛→∞

𝑓(𝑛)
𝑔(𝑛) = lim𝑛→∞

𝑛2(log 𝑛)5

𝑛5(log 𝑛)2 = lim𝑛→∞
(log 𝑛)3

𝑛3 = 0 ⟹ 𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)). Hence,
lim𝑛→∞

𝑓(𝑛)+𝑔(𝑛)
𝑔(𝑛) = lim𝑛→∞

𝑓(𝑛)
𝑔(𝑛) + 1 = 0 + 1 = 1 ⟹ 𝑓(𝑛) + 𝑔(𝑛) ∈ Θ(𝑛5(log 𝑛)2).
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Question A.5

Suppose 𝑇 (𝑛) = 36𝑇 (𝑛/6) + 2𝑛 + 𝑛8/3. Then, 𝑇 (𝑛) is in

A Θ(𝑛8/3)

B Θ(𝑛8/3 log 𝑛)

C Θ(𝑛2)

D Θ(𝑛2 log 𝑛)

E None of the above

Solution
Since 𝑎 = 36, 𝑏 = 6, 𝑑 = log6 36 = 2, and 𝑓(𝑛) = 2𝑛 + 𝑛8/3 ∈ Ω(𝑛2+𝜖) with
𝜖 = 8

3 − 2 = 2
3 , and the regularity condition holds (e.g., 36 ⋅ 𝑓(𝑛/6) ≤ 1

62/3 𝑓(𝑛) for large
𝑛, with 1

62/3 < 1), by Master Theorem Case 3 we have 𝑇 (𝑛) ∈ Θ(𝑛8/3).
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Question A.6

Suppose 𝑇 (𝑛) = 64𝑇 (𝑛/4) + 3𝑛1.5. Then, 𝑇 (𝑛) is in

A Θ(𝑛2)

B Θ(𝑛3)

C Θ(𝑛1.5)

D Θ(𝑛1.5 log 𝑛)

E None of the above

Solution
Since 𝑎 = 64, 𝑏 = 4, 𝑑 = log4 64 = 3, and 𝑓(𝑛) = 3𝑛1.5 ∈ 𝑂(𝑛3−𝜖) with 𝜖 = 1.5, by
Master Theorem Case 1 we have 𝑇 (𝑛) ∈ Θ(𝑛3).
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Question A.6

Suppose 𝑇 (𝑛) = 64𝑇 (𝑛/4) + 3𝑛1.5. Then, 𝑇 (𝑛) is in

A Θ(𝑛2)

B Θ(𝑛3)

C Θ(𝑛1.5)

D Θ(𝑛1.5 log 𝑛)

E None of the above

Solution
Since 𝑎 = 64, 𝑏 = 4, 𝑑 = log4 64 = 3, and 𝑓(𝑛) = 3𝑛1.5 ∈ 𝑂(𝑛3−𝜖) with 𝜖 = 1.5, by
Master Theorem Case 1 we have 𝑇 (𝑛) ∈ Θ(𝑛3).
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Question A.7 [P2]

Suppose 𝑇 (𝑛) = 𝑇 (𝑛/5) + 2𝑇 (𝑛/3) + 𝑛. Then, 𝑇 (𝑛) is in

A Θ(𝑛)

B 𝜔(𝑛2)

C Ω(𝑛 log 𝑛)

D 𝑜(𝑛)

E None of the above

Solution
Clearly, 𝑇 (𝑛) ≥ 𝑛. Let 𝑐 ≥ 15

2 be such that 𝑇 (𝑛) ≤ 𝑐𝑛 for all 𝑛 ≤ 100. We will show by
induction that 𝑇 (𝑛) ≤ 𝑐𝑛 for all 𝑛. Assuming that this is true for all 𝑛 < 𝑛0 where
𝑛0 > 100, we have 𝑇 (𝑛0) ≤ 𝑐 ⋅ 𝑛0

5 + 2𝑐 ⋅ 𝑛0
3 + 𝑛0 ≤ 𝑐𝑛0, where the last inequality follows

from the assumption that 𝑐 ≥ 15
2 . Hence, 𝑇 (𝑛) ∈ Θ(𝑛).
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Question A.8

For any randomized algorithm, let 𝐸(𝑛) and 𝑇 (𝑛) denote the expected and worst-case
running time, respectively, for inputs of length 𝑛. Then, which of the following statement
is always TRUE, irrespective of the randomized algorithm being considered?

A For every 𝑛, 𝐸(𝑛) < 𝑇 (𝑛)

B For every 𝑛, 𝐸(𝑛) = 𝑇 (𝑛)

C For every 𝑛, 𝐸(𝑛) > 𝑇 (𝑛)

D For at least one 𝑛, 𝐸(𝑛) < 𝑇 (𝑛), and for at least one 𝑛, 𝐸(𝑛) > 𝑇 (𝑛)

E None of the above

Solution
Since 𝑇 (𝑛) is the maximum running time over all inputs and random choices, we always
have 𝐸(𝑛) ≤ 𝑇 (𝑛). However, it can happen that 𝐸(𝑛) < 𝑇 (𝑛) for some 𝑛 (possibly
none), and 𝐸(𝑛) = 𝑇 (𝑛) for the remaining 𝑛 (possibly none).
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Question A.9

Suppose we throw 3 balls independently and uniformly at random into 5 bins. Then,

A The probability that all the balls fall into the same bin is 0.

B The probability that all the balls fall into the same bin is 3
5 .

C The probability that all the balls fall into the same bin is 1
25 .

D The probability that all the balls fall into the same bin is 1
9 .

E None of the above.

Solution
Let 𝐵𝑖 be the event that all 3 balls fall in bin 𝑖. Then, Pr(𝐵𝑖) = (1/5)3 = 1/125, and
since the events 𝐵1, … , 𝐵5 are disjoint (never occur at the same time),
Pr(⋃5

𝑖=1 𝐵𝑖) = 5 ⋅ (1/125) = 1/25.
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Question A.10
Consider an undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges. A
randomized algorithm selects a vertex 𝑣 ∈ 𝑉 uniformly at random and returns deg(𝑣),
where deg(𝑣) denotes the degree of vertex 𝑣. Let 𝑋 be the random variable that denotes
the output of this algorithm. What is the expected value of 𝑋, i.e., 𝔼[𝑋]?

A 𝑚

B 𝑛

C 𝑚/𝑛

D 2𝑚/𝑛

E None of the above

Solution
From the handshaking lemma, we have ∑𝑢∈𝑉 deg(𝑢) = 2𝑚. Since the vertex is chosen
uniformly at random from 𝑉, the expected value is 𝔼[𝑋] = 1

𝑛 ∑𝑣∈𝑉 deg(𝑣) = 2𝑚
𝑛 .

https://en.wikipedia.org/wiki/Handshaking_lemma
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Question B.1 [P3]

There are three rods and 𝑛 ≥ 1 disks of different diameters, all stacked on the first rod,
smallest on top and largest at the bottom.

Alice must move all disks to the third rod, following these rules:

1 Move one disk at a time from the top of any rod.
2 No disk may be placed on a smaller disk.
3 (Variant) Disks can only move between adjacent rods.

Let 𝑓(𝑛) be the number of moves Alice needs to complete this task (minimize moves, but
no proof required).

a. Write a recurrence for 𝑓(𝑛), including the base case(s), and explain how you derived it.
b. Solve the recurrence from part (a) (i.e., give a closed-form formula for 𝑓(𝑛), with

justification).
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Solution a
Alice can make the following moves1:

Step Move From To Moves

1 Top 𝑛 − 1 disks First rod Third rod 𝑓(𝑛 − 1)
2 Bottom disk First rod Second rod 1
3 Top 𝑛 − 1 disks Third rod First rod 𝑓(𝑛 − 1)
4 Bottom disk Second rod Third rod 1
5 Top 𝑛 − 1 disks First rod Third rod 𝑓(𝑛 − 1)

Hence,
Angle-Right Base case: 𝑓(1) = 2 moves (first rod to the second, second rod to the third)
Angle-Right Recursive step: 3𝑓(𝑛 − 1) + 2 moves

𝑓(𝑛) = {
2, if 𝑛 = 1,
3𝑓(𝑛 − 1) + 2, if 𝑛 > 1.

1Think about another alternative way!
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Solution b
We claim that 𝑓(𝑛) = 3𝑛 − 1 and prove this by induction.

Base case

𝑓(1) = 2 = 31 − 1.

Inductive step
Assume the claim holds for some 𝑛 ≥ 1, i.e., 𝑓(𝑛) = 3𝑛 − 1. Then:

𝑓(𝑛 + 1) = 3𝑓(𝑛) + 2
= 3(3𝑛 − 1) + 2
= 3𝑛+1 − 3 + 2
= 3𝑛+1 − 1.

Thus, the claim holds for all 𝑛 ≥ 1 by induction.
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Solution b (via expansion)
We rearrange 𝑓(𝑛) + 1 = 3𝑓(𝑛 − 1) + 3 = 3(𝑓(𝑛 − 1) + 1) and 𝑓(1) + 1 = 3. By
expansion, we get

𝑓(𝑛) + 1 = 3 (3 (⋯ 3 (𝑓 (1) + 1) ⋯)) = 3𝑛,

hence 𝑓(𝑛) = 3𝑛 − 1.
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Question B.2

Teacher Bob has 10 students and 20 candies.
Each student assigns a distinct value to each candy, summing to 3230.

Angle-Right Bob sees all students’ values and selects an ordering.
Angle-Right Students pick candies in two rounds based on Bob’s order.
Angle-Right On each turn, a student picks their highest-value available candy.
Angle-Right Each student gets 2 candies, with a final value equal to their sum.

Prove that Bob can always choose an ordering such that the sum of all 10 students’ final
values is at least 3230.
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Solution
If the ordering is chosen uniformly at random, the expected total final value is at least
3230, implying that such an ordering must exist.

Expected Value Calculation
Fix a student with values for the candies 𝑎1 > 𝑎2 > ⋯ > 𝑎20, where:

𝑎1 + 𝑎2 + ⋯ + 𝑎20 = 3230.

Angle-Right In position 𝑗, the student picks at least 𝑎𝑗 first.
Angle-Right In position 10 + 𝑗, she picks at least 𝑎10+𝑗.
Angle-Right Her final value is at least 𝑎𝑗 + 𝑎10+𝑗.

Since each position is equally likely (1/10), her expected final value is at least:

1
10

10
∑
𝑗=1

(𝑎𝑗 + 𝑎10+𝑗) = 1
10

⋅ 3230 = 3230
10

.

By linearity of expectation, the total expected value is at least: 10 ⋅ 3230
10 = 3230.
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Question B.3

Charlie has 100 coins, knowing that 4 are fake but not which ones.

Angle-Right All real coins have the same weight.
Angle-Right All fake coins have the same weight, but are lighter than real coins.
Angle-Right Charlie does not know these weights.

Charlie’s Balance
He can compare two disjoint sets of coins 𝐴 and 𝐵, determining:

1 𝐴 > 𝐵: 𝐴 is heavier than 𝐵
2 𝐴 < 𝐵: 𝐴 is lighter than 𝐵.
3 𝐴 = 𝐵: 𝐴 and 𝐵 weigh equally.

Determine, with proof, a small number 𝑘 such that by using at most 𝑘 weighings, Charlie
can always point to one coin and say with certainty that this coin is real.
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Solution
Charlie can determine the fake coins in at most 𝑘 = 2 weighings.

Step 1: Initial Weighing
Divide 100 coins into 𝐴 = 33, 𝐵 = 33, 𝐶 = 34.
Angle-Right Weigh 𝐴 vs. 𝐵 (If unequal - at most 1 fake coin is in heavier set)

Angle-Double-Right Remove a coin from the heavier set (1 coins),
Angle-Double-Right Weigh the rest in two equal sets (16 coins).

Angle-Right Weigh 𝐴 vs. 𝐵 (If equal - 𝐶 has 0, 2, or 4 fake coins)
Angle-Double-Right Weigh 𝐵 ∪ {𝑥} vs. 𝐶 for some 𝑥 ∈ 𝐴.

Step 2.Neq: Second Weighing (If first weighing unequal, say2 𝐴 > 𝐵)
Set 𝐴 is split 3 ways 𝐴1, 𝐴2, 𝐴3 with respective coin sizes 16, 16, 1.
Angle-Right Weigh 𝐴1 vs. 𝐴2 (If unequal)

Angle-Double-Right Removed coin in 𝐴3 is real.
Angle-Right Weigh 𝐴1 vs. 𝐴2 (If equal)

Angle-Double-Right Coins in both 𝐴1 and 𝐴2 are real.

2Note that 𝐵 > 𝐴 is symmetric.
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Step 2.Eq: Second Weighing (If first weighing equal)
Create set 𝐵′ = 𝐵 ∪ {𝑥}, by adding 𝑥 ∈ 𝐴 to 𝐵.
Angle-Right Weigh 𝐵′ vs. 𝐶 (If 𝐵′ > 𝐶)

Angle-Double-Right Added coin 𝑥 is real.
Angle-Right Weigh 𝐵′ vs. 𝐶 (If 𝐵′ = 𝐶)

Angle-Double-Right Coins in 𝐴 ∖ {𝑥} are real.
Angle-Right Weigh 𝐵′ vs. 𝐶 (If 𝐵′ < 𝐶)

Angle-Double-Right Coins in 𝐶 are real.
It may be clearer to see an illustration of the decision tree of the 2 weighings with the
possible configurations.
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A/33 0 0 0 0 0 1 1 1 1 2 2 2 3 3 4
B/33 0 1 2 3 4 0 1 2 3 0 1 2 0 1 0
C/34 4 3 2 1 0 3 2 1 0 2 1 0 1 0 0

A/33 1 2 2 3 3 4
B/33 0 0 1 0 1 0
C/34 3 2 1 1 0 0

A/33 0 1 2
B/33 0 1 2
C/34 4 2 0

A/33 0 0 0 0 1 1
B/33 1 2 3 4 2 3
C/34 3 2 1 0 1 0

A < B
A = B

A > B

Split A

A1/16 0 0 0 1
A2/16 0 0 1 0
A3/1 0 1 0 0

A3 is real

A1, A2 are real

A3 is real

A1
< A2

A1 = A2

A
1 > A

2

Split B

B1/16 0 0 0 1
B2/16 0 0 1 0
B3/1 0 1 0 0

B3 is real

B1, B2 are real

B3 is real
B1

< B2

B1 = B2

B
1 > B

2

Let B′ = B
⋃
{x ∈ A}

A \ {x}/32 0 1 2 0 1
B′/34 0 1 2 2 3
C/34 4 2 0 2 0

x real

A \ {x}/32 0 1
B′/34 0 1
C/34 4 2

A \ {x} real

A \ {x}/32 0
B′/34 2
C/34 2

C real

A \ {x}/32 2 1
B′/34 2 3
C/34 0 0

B
′ > C

B′ = C

B ′
< C

Figure 2: Configurations of fake coins across sets 𝐴, 𝐵, and 𝐶, where each column represents a
unique combination. The table specifies the number of fake coins in each set (e.g., 𝐴/33 indicates
that set 𝐴 has 33 coins, with the corresponding cell showing the number of fake coins in 𝐴).


