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Admin

> TG19 stats: mean: 22.07, median: 21.75, 25th: 16.5, 75th: 28.5
> Course stats: mean: 21.27, median: 19.75, 25th: 15, 75th: 26.5
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Figure 1: MCQ Correctness Statistics from course.

c
.0
n
n
=1
O
4
(@)
<
T
X
L
g
=
[0}
=
8
=
i
0]
(o]
o

2/22



Question A.1 [P1]

nt0 —n?is in
Q(n')
B o(n')
O(n?)
B O(n®)

None of the above
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Question A.1 [P1]

nt0 —n?is in
Q(n'h)
B o(n'°)
O(n?)
m O(n%)
None of the above

Solution
Since lim,,_, oo (1
answer is None of the above.

nlo 9

- = lim — L) =1 = n'%—n® € 6(n'?), the correct
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Question A.2

None of the above
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Question A.2

None of the above

Solution

lim (n+1)! _
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Question A.3

21°85™ s in
O(log, n)
B O(n?)
w(n)
B Q(v/n)

None of the above
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Question A.3

21°85™ s in
O(log, n)
B O(n?)
w(n)
B Q(v/n)

None of the above

Solution

logzn — plogs2 — 0.6309-- 55 options A, B, and C are incorrect. We check for D:
. gloggn .. nlogz2 .. log,2—1/2 __ log., n

lim,, o =7 = lim,, 5 = lim,, 0% =00 = 2" € Q(y/n).

=
.0
I
wn
3
0
4
a
<
T
X
L
g
<
o]
3
i)
=
i
1
(o]
o

5/22



=
.0
I
wn
3
0
4
a
<
T
X
L
g
<
o]
3
i)
=
0
1
(o]
o

Question A.4

Suppose f(n) € ©(n?(logn)®) and g(n) € O(n°(logn)?). Then, f(n)+ g(n) is in

O(n’(logn)®)
B O(n?(logn)”)
©(n”(logn)?)
B O(n(logn)T)

None of the above
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Question A.4

Suppose f(n) € ©(n?(logn)®) and g(n) € O(n°(logn)?). Then, f(n)+ g(n) is in
O(n°(logn)°
O(n?(logn)®
O(n°(logn)?

B O(n"(logn)"

None of the above

logn

)
)
)
)

Solution , . ,
lim,,_, % = lim,,_, ZQ{EEZ@ = lim,,_, (10%%) =0 = f(n) € o(g(n)). Hence,
lim,, o P = Jim, T 1= 041=1 = f(n)+g(n) € O(n(logn)?).

6/22



Question A.5

Suppose T'(n) = 36T (n/6) + 2n 4+ n®/3. Then, T(n) is in
O (n/3)
B O(n*3logn)
O(n?)
B O(n?logn)

None of the above
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Question A.5

Suppose T'(n) = 36T (n/6) + 2n 4+ n®/3. Then, T(n) is in
O (n®/3)
B O(n*3logn)
O(n?)
B O(n?logn)
None of the above

Solution

Since a =36, b =6, d =log, 36 = 2, and f(n) = 2n + n®3 € Q(n?*¢) with

e =2 —2=2, and the regularity condition holds (e.g., 36 - f(n/6) < 62% f(n) for large
n, with 62% < 1), by Master Theorem Case 3 we have T'(n) € ©(n®/3).
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Question A.6

Suppose T'(n) = 64T (n/4) + 3n'>. Then, T'(n) is in
O(n?)
B O(n?)
O(n'?)
B O(n'?logn)

None of the above
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Question A.6

Suppose T'(n) = 64T (n/4) + 3n'>. Then, T'(n) is in
O(n?)
B O(n?)
O(n'?)
B O(n'?logn)
None of the above

Solution
Since a = 64, b =4, d = log, 64 = 3, and f(n) = 3n"°> € O(n® ) with € = 1.5, by
Master Theorem Case 1 we have T'(n) € ©(n?).
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Question A.7 [P2]

Suppose T'(n) = T(n/5) + 2T (n/3) + n. Then, T'(n) is in
O(n)
B w(n?)
Q(nlogn)
@ o(n)

None of the above
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Question A.7 [P2]

Suppose T'(n) = T(n/5) + 2T (n/3) + n. Then, T'(n) is in
O(n)
B w(n)
Q(nlogn)
m o(n)
None of the above

Solution

Clearly, T(n) > n. Let ¢ > 22 be such that T(n) < cn for all n < 100. We will show by
induction that T'(n) < cn for all n. Assuming that this is true for all n < ny where

ng > 100, we have T'(ng) < ¢- %2 +2¢- 22 +ny < cn, where the last inequality follows
from the assumption that ¢ > 12. Hence, T'((n) € ©(n).
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Question A.8

For any randomized algorithm, let E(n) and T'(n) denote the expected and worst-case
running time, respectively, for inputs of length n. Then, which of the following statement
is always TRUE, irrespective of the randomized algorithm being considered?

For every n, E(n) < T(n)
B For every n, E(n) = T(n)
For every n, E(n) > T(n)

[ For at least one n, E(n) < T'(n), and for at least one n, E(n) > T'(n)

None of the above
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Question A.8

For any randomized algorithm, let E(n) and T'(n) denote the expected and worst-case
running time, respectively, for inputs of length n. Then, which of the following statement
is always TRUE, irrespective of the randomized algorithm being considered?

For every n, E(n) < T(n)
B For every n, E(n) = T(n)
For every n, E(n) > T(n)

[ For at least one n, E(n) < T'(n), and for at least one n, E(n) > T'(n)
None of the above

Solution

Since T'(n) is the maximum running time over all inputs and random choices, we always
have E(n) < T(n). However, it can happen that E(n) < T'(n) for some n (possibly
none), and E(n) = T'(n) for the remaining n (possibly none).
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Question A.9

Suppose we throw 3 balls independently and uniformly at random into 5 bins. Then,

The probability that all the balls fall into the same bin is 0.
B The probability that all the balls fall into the same bin is %

The probability that all the balls fall into the same bin is ==

25
B The probability that all the balls fall into the same bin is é.

None of the above.
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Question A.9

Suppose we throw 3 balls independently and uniformly at random into 5 bins. Then,
The probability that all the balls fall into the same bin is 0.

B The probability that all the balls fall into the same bin is %

The probability that all the balls fall into the same bin is %

B The probability that all the balls fall into the same bin is é.

None of the above.

Solution
Let B, be the event that all 3 balls fall in bin i. Then, Pr(B;) = (1/5)3 = 1/125, and
since the events By, ..., By are disjoint (never occur at the same time),

Pr(J7_, B;) =5-(1/125) = 1/25.
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Question A.10

Consider an undirected graph G = (V, E') with n = |V/| vertices and m = |F| edges. A
randomized algorithm selects a vertex v € V uniformly at random and returns deg(v),
where deg(v) denotes the degree of vertex v. Let X be the random variable that denotes
the output of this algorithm. What is the expected value of X, i.e., E[X]?

m
B n
m/n
B 2m/n

None of the above
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https://en.wikipedia.org/wiki/Handshaking_lemma

Question A.10

Consider an undirected graph G = (V, E') with n = |V/| vertices and m = |F| edges. A
randomized algorithm selects a vertex v € V uniformly at random and returns deg(v),
where deg(v) denotes the degree of vertex v. Let X be the random variable that denotes
the output of this algorithm. What is the expected value of X, i.e., E[X]?

m

Bn

m/n

B 2m/n

None of the above

Solution

From the handshaking lemma, we have }_ _ deg(u) = 2m. Since the vertex is chosen

uniformly at random from V, the expected value is E[X] = 1 > ey des(v) = Zm

=
.0
I
wn
3
0
4
a
<
«
X
L
g
<
o]
3
i)
=
i
1
o
o

12/22


https://en.wikipedia.org/wiki/Handshaking_lemma

Question B.1 [P3]

There are three rods and n > 1 disks of different diameters, all stacked on the first rod,
smallest on top and largest at the bottom.

Alice must move all disks to the third rod, following these rules:

Move one disk at a time from the top of any rod.
No disk may be placed on a smaller disk.
(Variant) Disks can only move between adjacent rods.

Let f(n) be the number of moves Alice needs to complete this task (minimize moves, but
no proof required).

B Write a recurrence for f(n), including the base case(s), and explain how you derived it.
B[ Solve the recurrence from part (a) (i.e., give a closed-form formula for f(n), with
justification).
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Solution a
Alice can make the following moves!:

Step Move From To Moves
1 Topn—1disks First rod Third rod  f(n—1)
2  Bottom disk First rod  Second rod 1
3 Topn—1disks Third rod First rod  f(n—1)
4 Bottom disk Second rod  Third rod 1
5 Topn—1disks  First rod Third rod  f(n—1)

Hence,
> Base case: f(1) =2 moves (first rod to the second, second rod to the third)
> Recursive step: 3f(n —1) + 2 moves

2, if n =1,
f<n):{3f(n—1)+2, if > 1.
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Solution b
We claim that f(n) = 3™ — 1 and prove this by induction.

Base case
f(l):2:31—1.

Inductive step
Assume the claim holds for some n > 1, i.e., f(n) = 3™ — 1. Then:

fin+1)=3f(n)+2

=3(3" —1)+2
=3ntl 349
=37t 1.

Thus, the claim holds for all » > 1 by induction.

o
o
o
o™
(9p]
O
=
S
w0
wn
3
Q
2
a
£
C
X
L
£
E
[0}
g
3
s
o
w
o
o

15/22



Solution b (via expansion)
We rearrange f(n) +1=3f(n—1)+3=3(f(n—1)+1) and f(1)+1=3. By
expansion, we get

f(n) +1=3B(3(f(1)+1)-)) =3,
hence f(n) = 3™ — 1.
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Question B.2

Teacher Bob has 10 students and 20 candies.
Each student assigns a distinct value to each candy, summing to 3230.

> Bob sees all students' values and selects an ordering.
> Students pick candies in two rounds based on Bob's order.
> On each turn, a student picks their highest-value available candy.

> Each student gets 2 candies, with a final value equal to their sum.

Prove that Bob can always choose an ordering such that the sum of all 10 students’ final

values is at least 3230.

17/22



Solution
If the ordering is chosen uniformly at random, the expected total final value is at least
3230, implying that such an ordering must exist.

Expected Value Calculation
Fix a student with values for the candies a; > ay > -+ > aqg, where:

> In position j, the student picks at least a; first.
> In position 10 + j, she picks at least a;q;.
> Her final value is at least a; + a1, ;.
Since each position is equally likely (1/10), her expected final value is at least:

1 & 1 3230
10 ]Zl(“j T os) = 753230 = 5

By linearity of expectation, the total expected value is at least: 10 - % = 3230.
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Question B.3

Charlie has 100 coins, knowing that 4 are fake but not which ones.

> All real coins have the same weight.
> All fake coins have the same weight, but are lighter than real coins.
> Charlie does not know these weights.

Charlie’s Balance
He can compare two disjoint sets of coins A and B, determining:
A > B: Ais heavier than B
A < B: Ais lighter than B.
A = B: A and B weigh equally.
Determine, with proof, a small number k such that by using at most k weighings, Charlie
can always point to one coin and say with certainty that this coin is real.
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Solution
Charlie can determine the fake coins in at most £ = 2 weighings.

Step 1: Initial Weighing
Divide 100 coins into A = 33, B = 33, C = 34.
> Weigh A vs. B (If unequal - at most 1 fake coin is in heavier set)

% Remove a coin from the heavier set (1 coins),
» Weigh the rest in two equal sets (16 coins).

> Weigh A vs. B (If equal - C has 0, 2, or 4 fake coins)
» Weigh BU {z} vs. C for some z € A.

Step 2.Neq: Second Weighing (If first weighing unequal, say> A > B)

Set A is split 3 ways A, A,, A5 with respective coin sizes 16, 16, 1.
> Weigh A, vs. A, (If unequal)
» Removed coin in Aj is real.
> Weigh A, vs. A, (If equal)
» Coins in both A, and A, are real.

2Note that B > A is symmetric.
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Step 2.Eq: Second Weighing (If first weighing equal)
Create set B = BU {z}, by adding x € A to B.
> Weigh B’ vs. C (If B" > C)
»> Added coin z is real.
> Weigh B’ vs. C (If B" = C)
» Coins in A\ {«} are real.
> Weigh B’ vs. C (If B" < C)
» Coins in C are real.
It may be clearer to see an illustration of the decision tree of the 2 weighings with the
possible configurations.
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A/33]0 0 00 0 1 1 1 1 2 2 2 3 3 4
B/33|0 1 23 40123012010
C/34|4 3 2 1032 10210100
2B _ A~
a3l 2 2 3 3 4 A A=B 8 T a0 0001 1
B/33/0 0 1 0 1 0 A33]0 1 2 B/33|1 2 3 4 2 3
C/3403 2 11 0 0 B/33lo 1 2 C/3403 2 1.0 10
J C/34|4 2 0 J
Split B Split A
Bi/16]0 0 0 1 A/16]0 0 0 1
Bx/16[0 0 1 0 , A2/1610 0 1 0
Let B = BU{z € A
| Bs/1 00 A\{r}/az oul{rj }) - A1 [0 1 0 0
AN {2}/3 2
LB 01;0 B'/34 |0 1 2 2 3 LB '71g4
1543 BB 2 c/34 |4 2 0 2 0 Py A — A ]
By, By are real A1, Ay are real
B=C
x real A\ {z} real
A\{=}/32]0 1 AN\ {2}/32] 0
B'/34 |0 1 B34
/34 4 2 c/3a |2

Figure 2: Configurations of fake coins across sets A, B, and C, where each column represents a
unique combination. The table specifies the number of fake coins in each set (e.g., A/33 indicates
that set A has 33 coins, with the corresponding cell showing the number of fake coins in A).
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