
D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

1/19

CS3230
eric_han@nus.edu.sg
https://eric-han.com

Computer Science

T07 – Week 8

Dynamic Programming
CS3230 – Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

2/19

Recap from T04

Equality Testing Problem
The key is to break down into the various cases (this I think everyone can do):

Angle-Right 𝐴 = 𝐵 and decided 𝐴 = 𝐵: 100% correct
Angle-Right 𝐴 = 𝐵 and decided 𝐴! = 𝐵: 100% correct
Angle-Right 𝐴! = 𝐵 and decided 𝐴 = 𝐵: 1 − 1/𝑛 correct
Angle-Right 𝐴! = 𝐵 and decided 𝐴! = 𝐵: 100% correct

The trick to break it down into the various cases.

Random Partition of a Graph
Similarly, it is to break down into the various cases. After getting the form, then try to
break the math.

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

3/19

Admin

1 Midterm Exam @ MPSH 1B (80mins): 13-Mar-2025, 14:00-16:00; Arrive at venue by
14:00, Exam starts ~14:10
Angle-Double-Right Info - Up until Randomized Algorithms; No calculators.
Angle-Double-Right Seat Map
Angle-Double-Right Seat Plan

2 Anything mentioned in (lectures, tutorials, assignments) would be ok to be quoted;
Everything else should be proved before using.
Angle-Double-Right Take note of this as some of you used some beyond the scope of our class (such as

Akra–Bazzi, for which that is not accepted without proof.).
3 All the best for your midterms!

https://canvas.nus.edu.sg/courses/69960/modules/items/519644
https://canvas.nus.edu.sg/courses/69960/modules/items/519645
https://canvas.nus.edu.sg/courses/69960/modules/items/519646

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

4/19

Lecture Review

Key Ideas in Dynamic Programming (DP)
Angle-Right Optimal substructure: Solve recursively by breaking into subproblems.
Angle-Right Few unique subproblems: Avoid redundant recomputation.

Two Approaches:
Angle-Right Top-down (Memoization): Store computed results to reuse in 𝑂(1).
Angle-Right Bottom-up (Tabulation): Solve iteratively from base cases.

Both methods improve efficiency by avoiding redundant work.

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

5/19

Convex Polygon Triangulation
Minimize the total weight of 𝑛 − 2 triangles in the optimal triangulation, considering:

Angle-Right Given a convex polygon with 𝑛 ≥ 2 vertices labeled 1, 2,… , 𝑛
Angle-Right Divide the polygon into 𝑛 − 2 triangles.
Angle-Right A triangle (𝑥, 𝑦, 𝑧) has weight 𝑊(𝑥, 𝑦, 𝑧) (an 𝑂(1) black-box function).
Angle-Right Multiple triangulations exist.

Figure 1: Two triangulation examples (middle, right).

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

6/19

Question 1 [G]/[P1]

Let 𝑇𝑅𝐼(𝑥, 𝑦) be a function to triangulate a polygon with minimum weight sum, but we
only consider the vertices in the range of (𝑥, 𝑥 + 1, 𝑥 + 2,… , 𝑦). So our problem can be
solved by calling 𝑇𝑅𝐼(1, 𝑛). Your first task is to write a recursive formula of 𝑇𝑅𝐼(𝑥, 𝑦).

a. Find the base case of 𝑇𝑅𝐼(𝑥, 𝑦)

b. Find the recursive case of 𝑇𝑅𝐼(𝑥, 𝑦)

Hint: It calls 𝑇𝑅𝐼(𝑥′, 𝑦′) where 𝑥 < 𝑥′ or 𝑦′ < 𝑦.

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

7/19

Answer

𝑇𝑅𝐼(𝑥, 𝑦) = {
0, if 𝑦 − 𝑥 = 1

min
𝑘∈[𝑥+1,𝑦−1]

[𝑇𝑅𝐼 (𝑥, 𝑘) +𝑊(𝑥, 𝑘, 𝑦) + 𝑇𝑅𝐼 (𝑘, 𝑦)] . otherwise

a. Base Case: Cannot triangulate a line (adjacent vertices 𝑥 and 𝑦).
b. Recursive Case: Try all triangulations in any order in the recurrence:
Angle-Right Subproblems 𝑇𝑅𝐼(𝑥, 𝑘) and 𝑇𝑅𝐼(𝑘, 𝑦)
Angle-Right Triangle (𝑥, 𝑘, 𝑦) with weight 𝑊(𝑥, 𝑘, 𝑦)

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

8/19

Illustration

Figure 2: Optimal substructure

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

9/19

Question 2 [G]

What is the time complexity of this recursive formula 𝑇𝑅𝐼(1, 𝑛), if implemented verbatim.

a. 𝑂(𝑛2)

b. 𝑂(𝑛3)

c. 𝑂(3𝑛)

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

10/19

Answer
Let 𝑇 (𝑛) be the worst-case running time of 𝑇𝑅𝐼(1, 𝑛).

𝑇 (2) = 𝑐, when 𝑦 − 𝑥 = 1.

Expanding the recurrence for 𝑇 (𝑛), 𝑇 (𝑛 − 1):

𝑇 (𝑛) = (𝑇 (2) + 𝑇 (𝑛 − 1) + 𝑐) + (𝑇 (3) + 𝑇 (𝑛 − 2) + 𝑐)
+ …+ (𝑇 (𝑛 − 2) + 𝑇(3) + 𝑐) + (𝑇 (𝑛 − 1) + 𝑇(2) + 𝑐)

𝑇 (𝑛 − 1) = (𝑇 (2) + 𝑇 (𝑛 − 2) + 𝑐) + (𝑇 (3) + 𝑇 (𝑛 − 3) + 𝑐)
+ …+ (𝑇 (𝑛 − 2) + 𝑇(2) + 𝑐)

Subtracting 𝑇 (𝑛 − 1) from 𝑇 (𝑛):

𝑇 (𝑛) − 𝑇(𝑛 − 1) = 2𝑇 (𝑛 − 1) + 𝑐
⟹ 𝑇(𝑛) = 3𝑇 (𝑛 − 1) + 𝑐
⟹ 𝑇(𝑛) ≈ 3𝑛 ∈ 𝑂(3𝑛).

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

11/19

Question 3 [P2]

Which one is the correct explanation regarding the findings from (Q2)?

a. It has 3𝑛 non-overlapping subproblems, and each call runs in Θ(1).

b. It has 𝑛2 non-overlapping subproblems, and each call runs in Θ(3𝑛

𝑛2).

c. It has 𝑛2 subproblems, but there are many overlaps.

Answer
It has 𝑛2 subproblems with significant overlap, making a Dynamic Programming solution
necessary for efficiency.

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

11/19

Question 3 [P2]

Which one is the correct explanation regarding the findings from (Q2)?

a. It has 3𝑛 non-overlapping subproblems, and each call runs in Θ(1).

b. It has 𝑛2 non-overlapping subproblems, and each call runs in Θ(3𝑛

𝑛2).

c. It has 𝑛2 subproblems, but there are many overlaps.

Answer
It has 𝑛2 subproblems with significant overlap, making a Dynamic Programming solution
necessary for efficiency.

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

12/19

Question 4 [G]

Design a Dynamic Programming (DP) solution for Convex Polygon Triangulation
problem.

a. Using Top-Down DP

b. Using Bottom-Up DP

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

13/19

Answer

Using Top-Down DP
Use a 2D 𝑚𝑒𝑚𝑜 table of size 𝑛 × 𝑛 (𝑂(𝑛2) space).

Algorithm
1 𝑇𝑅𝐼(𝑥, 𝑦) is previously computed: return 𝑚𝑒𝑚𝑜[𝑥][𝑦]
2 otherwise recursively solve 𝑂(𝑛) subproblems:

a. Compute the min for 𝑥 < 𝑘 < 𝑦 ∶ 𝑇𝑅𝐼 (𝑥, 𝑘) +𝑊(𝑥, 𝑘, 𝑦) + 𝑇𝑅𝐼 (𝑘, 𝑦)
b. Store it in 𝑚𝑒𝑚𝑜[𝑥][𝑦]

Analysis
Angle-Right 𝑂(𝑛2) different subproblems
Angle-Right each sub-problem is only computed once in 𝑂(𝑛)
Angle-Right so the total time complexity is 𝑂(𝑛2 × 𝑛) = 𝑂(𝑛3).

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

14/19

Illustration’s Weights
Different weight functions can be used. Standard implementations typically define a
triangle’s weight as its perimeter, the sum of its side lengths. For illustration, we randomly
assign weights to each triangle.

Table 1: Truncated table of randomly generated weights for animations and illustrations.

𝑥 𝑘 𝑦 𝑊(𝑥, 𝑘, 𝑦)
0 1 2 3
0 1 3 1
0 1 4 7
0 1 5 4
0 2 3 2

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

15/19

Illustration
Show animation of the memoization table: T07.q4a.gif.

0 1 2 3 4 5
y

0

1

2

3

4

5

x

0 3 3

0 2 3 6

0 1 4

0 3

0

0 1 2 3 4 5
y

0

1

2

3

4

5

x
0 3 3

0 2 3 6

0 1 4

0 3

0

0 1 2 3 4 5
y

0

1

2

3

4

5

x

0 3 3

0 2 3 6

0 1 4

0 3

0

0 1 2 3 4 5
y

0

1

2

3

4

5

x

0 3 3 4

0 2 3 6

0 1 4

0 3

0

Figure 3: 𝑚𝑒𝑚𝑜 table: 𝑇𝑅𝐼(0, 4) with its subproblems in row 𝑇𝑅𝐼(0, ?) and column 𝑇𝑅𝐼(?, 4).

https://eric-han.com/teaching/AY2425S2/CS3230/T07.q4a.gif

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

16/19

Using Bottom-Up DP
Use a 2D 𝑇𝑅𝐼 DP table of size 𝑛 × 𝑛 (𝑂(𝑛2) space, same as 𝑚𝑒𝑚𝑜), but now we must
determine the correct filling order (topological order of the underlying recursion DAG).

Algorithm
1 Base Case: For each 𝑥 ∈ [1..𝑛 − 1], set 𝑇𝑅𝐼[𝑥][𝑥 + 1] = 0. This is one index away

from the anti-diagonal of the 𝑛 × 𝑛 DP table.
2 Recursive Case: Fill the table anti-diagonally, starting from 2 indices away from the

anti-diagonal. Each 𝑇𝑅𝐼(𝑥, 𝑦) needs to compute the min over previously computed
values in its row and column, requiring a anti-diagonal filling order.

Analysis
Overall time complexity is 𝑂(𝑛3),
Angle-Right which is the same as Top-Down DP approach,
Angle-Right Bottom-Up method can benefit from reduced recursion overhead.

https://en.wikipedia.org/wiki/Main_diagonal#Antidiagonal

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

17/19

Implementation

def compute_bottomup(n, w):
TRI = [[-1] * n for _ in range(n)] # Initialize the DP table
for x in range(n - 1): # Base case, notice the 0-based indexing

TRI[x][x + 1] = 0

Fill the table anti-diagonally
for delta in range(2, n): # Delta is the gap between x and y

for x in range(n - delta): # Iterate over all valid x
y = x + delta
t = float('inf')
for k in range(x + 1, y): # min over all x < k < y

t = min(t, TRI[x][k] + w(x, k, y) + TRI[k][y])
TRI[x][y] = t

return TRI[0][n - 1]

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

18/19

Illustration
Show animation of the DP table: T07.q4b.gif.

0 1 2 3 4 5
y

0

1

2

3

4

5

x

0 3

0 2

0 1

0 3

0

0 1 2 3 4 5
y

0

1

2

3

4

5

x
0 3 3

0 2 3

0 1 4

0 3

0

0 1 2 3 4 5
y

0

1

2

3

4

5

x

0 3 3 4

0 2 3 6

0 1 4

0 3

0

0 1 2 3 4 5
y

0

1

2

3

4

5

x

0 3 3 4 7

0 2 3 6

0 1 4

0 3

0

Figure 4: 𝑇𝑅𝐼 DP table: Progressing through each anti-diagonal.

https://eric-han.com/teaching/AY2425S2/CS3230/T07.q4b.gif

D
yn

am
ic

Pr
og

ra
m

m
in

g
—

CS
32

30

19/19

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

1 Implement compute_topdown .

2 Check that you get this output:

Top-down == Bottom-up: 7

https://github.com/eric-vader/nus-cs3230-practical

