CS3230

eric_han@nus.edu.sg

? NUS | Computing https://eric-han.com

National University i
of Singapore Computer Science

TO7 — Week 8

Dynamic Programming

C53230 — Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com

Recap from T04

Equality Testing Problem
The key is to break down into the various cases (this | think everyone can do):
> A = B and decided A = B: 100% correct
> A = B and decided A! = B: 100% correct
> Al = B and decided A = B: 1 — 1/n correct
> Al = B and decided A! = B: 100% correct
The trick to break it down into the various cases.

Random Partition of a Graph

Similarly, it is to break down into the various cases. After getting the form, then try to
break the math.

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

2/19

Admin

Midterm Exam @ MPSH 1B (80mins): 13-Mar-2025, 14:00-16:00; Arrive at venue by
14:00, Exam starts ~14:10
» Info - Up until Randomized Algorithms; No calculators.
» Seat Map
» Seat Plan
Anything mentioned in (lectures, tutorials, assignments) would be ok to be quoted;
Everything else should be proved before using.
» Take note of this as some of you used some beyond the scope of our class (such as
Akra—Bazzi, for which that is not accepted without proof.).
All the best for your midterms!

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

3/19

https://canvas.nus.edu.sg/courses/69960/modules/items/519644
https://canvas.nus.edu.sg/courses/69960/modules/items/519645
https://canvas.nus.edu.sg/courses/69960/modules/items/519646

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

Lecture Review

Key Ideas in Dynamic Programming (DP)

> Optimal substructure: Solve recursively by breaking into subproblems.

> Few unique subproblems: Avoid redundant recomputation.

Two Approaches:

> Top-down (Memoization): Store computed results to reuse in O(1).
> Bottom-up (Tabulation): Solve iteratively from base cases.
Both methods improve efficiency by avoiding redundant work.

4/19

Convex Polygon Triangulation

Minimize the total weight of n — 2 triangles in the optimal triangulation, considering:

> Given a convex polygon with n > 2 vertices labeled 1,2,...,n

> Divide the polygon into n — 2 triangles.

> A triangle (z,y, z) has weight W(x,y, z) (an O(1) black-box function).
> Multiple triangulations exist.

o
™
]
™
%]
O

Pn P1 Pn P1

Figure 1: Two triangulation examples (middle, right).

Dynamic Programming —

5/19

Question 1 [G]/[P1]

Let TRI(z,y) be a function to triangulate a polygon with minimum weight sum, but we
only consider the vertices in the range of (z,x + 1,2+ 2,...,y). So our problem can be
solved by calling TRI(1,n). Your first task is to write a recursive formula of TRI(x,y).

B Find the base case of TRI(z,y)
B Find the recursive case of TRI(z,y)
Hint: It calls TRI(z',y") where x < z’ or ¢y’ < y.

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

6/19

Answer

0, fy—xz=1

TRI(z,y) = { min [TRI(z, k) + W(z,k,y) + TRI(k,y)]. otherwise
kelz+1,y—1]

B Base Case: Cannot triangulate a line (adjacent vertices x and y).

B Recursive Case: Try all triangulations in any order in the recurrence:
> Subproblems TRI(x,k) and TRI(k,y)
> Triangle (z, k,y) with weight W (x, k, y)

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

7/19

Dynamic Programming

lHlustration

Polygon (p1,....px) is

P o) B
olygon (i....pa) is optimally triangulated

optimally triangulated
P2
Pn-1

Pn 71

Figure 2: Optimal substructure

8/19

Question 2 [G]

What is the time complexity of this recursive formula T'RI(1,n), if implemented verbatim.
B O(n?)
B O(n’)
O(3"™)

o
o
(9]
o
)
O
oo
£
£
£
o]
T
1)
o
0
o
.2
£
©
c
>
0o

9/19

o
o
(9]
o
)
O
oo
£
£
£
o]
T
1)
o
0
o
.2
£
©
c
>
0o

Answer
Let T'(n) be the worst-case running time of TRI(1,n).

T(2)=c¢, wheny—z=1.
Expanding the recurrence for T'(n), T'(n — 1):

T(n)=(+T(n—1)+c)+(+T(n—2)+¢)
+ ..+ (T(n—2)+ +0)+ (T(n—1)+ +c)
T(n—1)=(+T(n—2)4+c)+(+T(n—3)4¢)
+ ..+ (T(n—2) + +)

Subtracting T'(n — 1) from T'(n):

T(n)—T(n—1)=2T(n—1)+c¢
= T(n)=3T(n—1)+c
= T(n)~ 3" € O(3").

10/19

Question 3 [P2]

Which one is the correct explanation regarding the findings from (Q2)?
B It has 3" non-overlapping subproblems, and each call runs in ©(1).
B It has n? non-overlapping subproblems, and each call runs in © (%)

It has n? subproblems, but there are many overlaps.

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

11/19

Question 3 [P2]

Which one is the correct explanation regarding the findings from (Q2)?

B It has 3" non-overlapping subproblems, and each call runs in ©(1).

3’71
nZ

).

B It has n? non-overlapping subproblems, and each call runs in @(

It has n? subproblems, but there are many overlaps.

Answer

It has n? subproblems with significant overlap, making a Dynamic Programming solution
necessary for efficiency.

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

11/19

Question 4 [G]

Design a Dynamic Programming (DP) solution for Convex Polygon Triangulation
problem.

B Using Top-Down DP
B Using Bottom-Up DP

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

12/19

o
o
(9]
o
)
O
oo
£
£
£
o]
T
1)
o
0
o
.2
£
©
c
>
0o

Answer

Using Top-Down DP

Use a 2D memo table of size n x n (O(n?) space).

Algorithm

TRI(x,y) is previously computed: return memol[z][y]

otherwise recursively solve O(n) subproblems:
a. Compute the min for © < k < y: TRI(x, k) + W(x, k,y) + TRI (k,y)
b. Store it in memolx][y]

Analysis
> O(n?) different subproblems
> each sub-problem is only computed once in O(n)
> so the total time complexity is O(n? x n) = O(n?).

13/19

lllustration’s Weights

Different weight functions can be used. Standard implementations typically define a
triangle's weight as its perimeter, the sum of its side lengths. For illustration, we randomly
assign weights to each triangle.

Table 1: Truncated table of randomly generated weights for animations and illustrations.

Wiz, k,y

~—

oo oo ol|’&
N R ==
WOl WN |
N DN =W

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

14/19

lllustration
Show animation of the memoization table: T07.q4a.gif.

.
o | & W| O

o
wlwl|lnNn| o
w

Figure 3: memo table: TRI(0,4) with its subproblems in row TRI(0,7) and column TRI(?,4).

Dynamic Programming

15/19

https://eric-han.com/teaching/AY2425S2/CS3230/T07.q4a.gif

Using Bottom-Up DP

Use a 2D T'RI DP table of size n x n (O(n?) space, same as memo), but now we must
determine the correct filling order (topological order of the underlying recursion DAG).

Algorithm
Base Case: For each z € [1..n — 1], set TRI[z][x 4+ 1] = 0. This is one index away
from the anti-diagonal of the n x n DP table.
Recursive Case: Fill the table anti-diagonally, starting from 2 indices away from the
anti-diagonal. Each TRI(x,y) needs to compute the min over previously computed
values in its row and column, requiring a anti-diagonal filling order.

Analysis
Overall time complexity is O(n?),
> which is the same as Top-Down DP approach,
> Bottom-Up method can benefit from reduced recursion overhead.

o
o
(9]
o
)
O
oo
£
£
£
©
T
1)
o
0
o
.2
£
©
c
>
0o

16/19

https://en.wikipedia.org/wiki/Main_diagonal#Antidiagonal

o
™
]
™
%]
O

Dynamic Programming —

Implementation

def compute_bottomup(n, w):
TRI = [[-1] * n for _ in range(n)] # Initialize the DP table
for x in range(n - 1): # Base case, notice the O-based indexing
TRI[x]I[x + 1] =0

Fill the table anti-diagonally
for delta in range(2, n): # Delta is the gap between z and y
for x in range(n - delta): # Iterate over all walid z
y = x + delta
t = float('inf')
for k in range(x + 1, y): # min over all z < k < y
t = min(t, TRI[x][k] + w(x, k, y) + TRI[k][y]l)
TRI[x][y] = t

return TRI[0] [n - 1]

17/19

lllustration
Show animation of the DP table: T07.q4b.gif.

|
Figure 4: T RI DP table: Progressing through each anti-diagonal.

Dynamic Programming

18/19

https://eric-han.com/teaching/AY2425S2/CS3230/T07.q4b.gif

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!
Implement compute_topdown .
Check that you get this output:

Top-down == Bottom-up: 7

o
o
(9]
o
)
O
oo
£
£
£
o]
T
1)
o
0
o
.2
£
©
c
>
0o

19/19

https://github.com/eric-vader/nus-cs3230-practical

