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Admin
Assignment 3

Q1 - NUS OSA cards
Angle-Right Be aware that the focus is on query complexity, not just time complexity. Some

answers described time complexity, which is fine here but not always accurate.
Angle-Right Use MT when possible. Some used other techniques, which are okay, but MT is the

preferred lazy approach.
Angle-Right Ensure you write down the recurrence relation when using a recursive algorithm

before discussing it.

Q2 - Inversions in array
Angle-Right Avoid brute force approaches—consider faster algorithms.
Angle-Right Otherwise, most solutions look fine.

Q3 - Bubble sort
Angle-Right No major issues noted.
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Assignment 4

Q1 - Two largest numbers
Angle-Right Some missed discussing why the answer involves n. Show some working (e.g., (n-2)

+ 1) or similar reasoning.

Q2 - Counting sort
Angle-Right Clearly identify which lines use k vs. n complexity and summarize the conclusion

accordingly.

Q3 Heavier Balls
Angle-Right Many struggled with this question.

Tip: Break it down into cases—using a table may help with analysis.
Angle-Right Generally poorly attempted; if incomplete, study the solution and try to reattempt it.
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Mid-semester Survey

49%
48%

3%

As expected
Harder than expected
Easier than expected

Figure 1: How do you find the difficulty of the course? [Module]
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57%29%

14%

As expected
Harder than expected
Easier than expected

Figure 2: How do you find the difficulty of the course? [TG19]
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71%

14%

14%

Better than expected
As expected
Below expected

Figure 3: Your assessment of your TG tutor, based on how he/she runs the tutorial [TG19]
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Please let us know any comments/suggestions about the course so far. [TG19]
Angle-Right Tutorial Participation:

While “participation is good for learning and interactivity,” the emphasis on it may be
too strong. The student feels they “can only learn so much from other students
answering the questions” and suggests placing “more emphasis on teaching the
algorithms and concepts for better learning.”

Angle-Right Mathematical Proofs vs. Algorithms:
The student prefers “less emphasis on full-on mathematical proofs like in assignment
1, q1b” and would rather see “more questions instead on algorithms.” If proofs are
included, they suggest clarifying “how this ties in to the overall goal of the course.”

Angle-Right Lecture Pace:
Solutions in lectures are “covered too quickly,” making “the reasonings behind the
proofs more abstract and difficult to understand.” They recommend a “slower pace to
ensure that the reasonings and concepts can be effectively conveyed.”

Angle-Right Appreciation:
The student acknowledges that these concerns are not due to the tutor and expresses
gratitude for the “teaching team’s dedication” and for holding a mid-semester survey.
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Responses
Angle-Right Tutorial Participation:1 (Need to balance participation vs engaging with content

taught in lectures2) If you have a specific suggestion here, please come talk to me.
Angle-Double-Right Attendance: Just be present.
Angle-Double-Right Participation x2: Our class often does not require students to present full solutions, and

are often just discuss intuition and I present the detailed answer.
Angle-Right Mathematical Proofs vs. Algorithms: These math proofs often appear during the

analysis for example A1 Q1B appears in randomized quicksort analysis. We will
consider putting these clarifications in the next iteration of CS3230.

Angle-Right Lecture Pace: We will keep it not too fast and explain the intuition if possible.
Angle-Right Appreciation: Thanks!

Thanks for your professional feedback, lets improve together!

1Submit these under module feedback, not teaching feedback, in the end-of-sem review.
2Teaching the algorithms is done during lectures.
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Lecture Review

Techniques
Angle-Right Linearity of expectations
Angle-Right Indicator random variables
Angle-Right Markov inequality
Angle-Right Union bound
Angle-Right Principle of deferred decision
Angle-Right Amplification of success probability

Algorithms
Angle-Right Freivalds’ algorithm (Monte Carlo)
Angle-Right (Randomized) Quick Sort (Las Vegas)

Balls and Bins
Angle-Right Coupon collector (probability of no empty bin)
Angle-Right Chain hashing (expected bin size)



Ra
nd

om
iz

ed
A

lg
or

ith
m

s
—

CS
32

30

10/22

Question 1 [G]/[P1]

In the class, we showed that Freivalds’ algorithm succeeds with a probability of at least 1/2.

Show that the bound 1/2 in the analysis is actually the best possible by constructing an
input (𝐴, 𝐵, 𝐶) on which the success probability of Freivalds’ algorithm is precisely 1/2.
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Answer

Best Possible 1 × 1 Matrix Example
Consider 1 × 1 matrices: 𝐴 = (1), 𝐵 = (0), 𝐶 = (1) ⟹ 𝐴𝐵 = (1)(0) = 0 ≠ 𝐶.
In Freivalds’ algorithm, let 𝑣 = (𝑣1), where 𝑣1 is randomly chosen from {0, 1}:
Angle-Right Incorrect with probability 1/2, 𝑣1 = 0, so 𝐴(𝐵𝑣) = 𝐶𝑣.
Angle-Right Correct with probability 1/2, 𝑣1 = 1, so 𝐴(𝐵𝑣) ≠ 𝐶𝑣.

Thus, the probability of success is exactly 1/2.

Generalizing to 𝑛 × 𝑛 Matrices
Appending zeros extends this construction to any 𝑛 × 𝑛 matrix. For 𝑛 = 3, we use:

𝐴 = ⎛⎜
⎝

1 0 0
0 0 0
0 0 0

⎞⎟
⎠

, 𝐵 = ⎛⎜
⎝

0 0 0
0 0 0
0 0 0

⎞⎟
⎠

, 𝐶 = ⎛⎜
⎝

1 0 0
0 0 0
0 0 0

⎞⎟
⎠

and we still have: 𝐴(𝐵𝑣) = 𝐶𝑣 if 𝑣1 = 0 and 𝐴(𝐵𝑣) ≠ 𝐶𝑣 if 𝑣1 = 1.
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Equality Testing Problem

Alice holds an 𝑛-bit string 𝑆𝐴 ∈ {0, 1}𝑛, Bob holds an 𝑛-bit string 𝑆𝐵 ∈ {0, 1}𝑛, and
they want to decide whether 𝑆𝐴 = 𝑆𝐵.

Protocol
1 Let 𝑆 be the set of 𝑛2 smallest prime numbers.
2 Alice samples a number 𝑝 from 𝑆 uniformly at random.
3 Alice sends 𝑝 and 𝑆𝐴 mod 𝑝 to Bob (thus, only 𝑂(log 𝑝) ⊆ 𝑂(log 𝑛) bits are sent,

see Q3).
4 After receiving Alice’s message, Bob calculates 𝑆𝐵 mod 𝑝.
5 If 𝑆𝐴 mod 𝑝 = 𝑆𝐵 mod 𝑝, Bob decides that 𝑆𝐴 = 𝑆𝐵, otherwise Bob decides that

𝑆𝐴 ≠ 𝑆𝐵.
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Question 2

Show that this (randomized) communication protocol is correct with a probability of at
least 1 − 1

𝑛 .

Answer
We consider:

Angle-Right Case: 𝑆𝐴 = 𝑆𝐵
Bob always decides 𝑆𝐴 = 𝑆𝐵 since 𝑆𝐴 mod 𝑝 = 𝑆𝐵 mod 𝑝 for all 𝑝, ensuring
correctness with probability 1.

Angle-Right Case: 𝑆𝐴 ≠ 𝑆𝐵
Incorrect only if 𝑆𝐴 mod 𝑝 = 𝑆𝐵 mod 𝑝, meaning 𝑝 is a divisor of |𝑆𝐴 − 𝑆𝐵|.
Angle-Double-Right Since |𝑆𝐴 − 𝑆𝐵| ≤ 2𝑛, it has at most 𝑛 prime factors (Proof).
Angle-Double-Right The probability that a random 𝑝 ∈ 𝑆 divides |𝑆𝐴 − 𝑆𝐵| is at most 𝑛

|𝑆| ≤ 1
𝑛 .

Correct with probability at least 1 − 1/𝑛.
Combining both cases, the algorithm is correct with probability at least 1 − 1/𝑛.

https://math.stackexchange.com/questions/4293096/prove-that-the-number-of-prime-factors-of-an-integer-n-greater-than-1-is-at-most
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Question 3 [P2]

Show that any deterministic algorithm solving the equality testing problem requires
communicating Ω(𝑛) bits in the worst case.

Answer
In the one-way communication model, Alice sends a message to Bob, who then decides
whether 𝑆𝐴 = 𝑆𝐵. A lower bound of 𝑛 bits follows:

Angle-Right There are 2𝑛 possible 𝑛-bit strings 𝑆𝐴.
Angle-Right Alice can send at most 2𝑛−1 distinct (𝑛 − 1)-bit messages.

By the pigeonhole principle, at least two distinct 𝑛-bit strings, say 𝑋 and 𝑌, must map to
the same message. This means Bob cannot distinguish between:

Angle-Right (𝑆𝐴 = 𝑋, 𝑆𝐵 = 𝑋)
Angle-Right (𝑆𝐴 = 𝑌 , 𝑆𝐵 = 𝑋)

Since Bob must fail in at least one case, at least 𝑛 bits are required for correctness.
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Random Partition of a Graph

Given a graph 𝐺 = (𝑉 , 𝐸) (without self-loops), partition its vertex set into two parts
𝑉 = 𝑉1 ∪ 𝑉2 randomly as follows:

Angle-Right Each vertex 𝑣 ∈ 𝑉 flips an unbiased coin independently:
Angle-Double-Right If heads (probability 1/2), 𝑣 joins 𝑉1.
Angle-Double-Right If tails (probability 1/2), 𝑣 joins 𝑉2.
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Question 4 [G]/[P3]
Show that the expected number of edges crossing 𝑉1 and 𝑉2 is exactly |𝐸|/2.

Answer
For each edge 𝑒 ∈ 𝐸, let 𝑋𝑒 be an indicator3 random variable for the event that 𝑒 crosses
between 𝑉1 and 𝑉2.

Compute E[𝑋𝑒]
For any edge 𝑒 = {𝑢, 𝑣}, we consider the possible assignments:

Angle-Right 𝑢, 𝑣 ∈ 𝑉1: Probability 1/4 (no crossing).
Angle-Right 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2: Probability 1/4 (crossing).
Angle-Right 𝑢 ∈ 𝑉2, 𝑣 ∈ 𝑉1: Probability 1/4 (crossing).
Angle-Right 𝑢, 𝑣 ∈ 𝑉2: Probability 1/4 (no crossing).

Since 𝑒 crosses with probability 1/4 + 1/4 = 1/2, we have:

E[𝑋𝑒] = 1 ⋅ Pr[𝑒 crosses 𝑉1 and 𝑉2] = 1/2.

3Takes the value 1 if a specific event occurs and 0 otherwise.
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Expected4 number of edges crossing 𝑉1 and 𝑉2 is:

E[𝑋] = E[∑
𝑒∈𝐸

𝑋𝑒] (𝑋 = ∑
𝑒∈𝐸

𝑋𝑒)

= ∑
𝑒∈𝐸

E[𝑋𝑒] (Linearity of expectation)

= ∑
𝑒∈𝐸

1
2

(Each edge E[𝑋𝑒] = 1/2)

= |𝐸|
2

. (Sum over all edges)

4The symbol 𝔼 is commonly used as well.
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Question 5 [G]

Is it possible to improve the bound |𝐸|/2 in the above result?

If you claim it is possible, propose some ideas and analyze the new bound.
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Answer

Assuming 𝐸 ≠ ∅
The partitioning algorithm can be slightly improved:

Angle-Right Pick an edge 𝑒∗ = {𝑢∗, 𝑣∗}.
Angle-Right Force 𝑢∗ ∈ 𝑉1 and 𝑣∗ ∈ 𝑉2.
Angle-Right Assign the remaining vertices 𝑉 ∖ {𝑢∗, 𝑣∗} randomly.

Analysis

E[𝑋𝑒] = {
1, if 𝑒 = 𝑒∗,
1
2 , if 𝑒 ∈ 𝐸 ∖ {𝑒∗}.

Thus, the expected number of crossing edges is:

E[𝑋] = ∑
𝑒∈𝐸

E[𝑋𝑒] = 1 + |𝐸| − 1
2

= |𝐸| + 1
2

,

which is slightly better than |𝐸|
2 .
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Assuming Even |𝑉 |
We can use the following:

Angle-Right Select 𝑉1 uniformly at random from all (|𝑉 |/2)-vertex subsets of 𝑉
Angle-Right Set 𝑉2 = 𝑉 ∖ 𝑉1.

Analysis
To compute probability of 𝑒 = {𝑢, 𝑣} crosses 𝑉1 and 𝑉2, we begin with Pr(𝑢 ∈ 𝑉1):

Pr(𝑢 ∈ 𝑉1) = |𝑉 |/2
|𝑉 |

= 1
2

(Each vertex is equally likely to be in 𝑉1)

Given that 𝑢 ∈ 𝑉1, the probability that 𝑣 ∈ 𝑉2 is:

Pr(𝑣 ∈ 𝑉2 ∣ 𝑢 ∈ 𝑉1) = 1 − Pr(𝑣 ∈ 𝑉1 ∣ 𝑢 ∈ 𝑉1) (Complement rule)

= 1 − |𝑉 |/2 − 1
|𝑉 | − 1

= |𝑉 |/2
|𝑉 | − 1

. (Probability of 𝑣 being in 𝑉1)
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Similarly, for 𝑢 ∈ 𝑉2, the case is symmetric; we sum both cases:

E[𝑋𝑒] = Pr(𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2) + Pr(𝑢 ∈ 𝑉2, 𝑣 ∈ 𝑉1)
= 2 ⋅ Pr(𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2) (Two symmetric cases)
= 2 ⋅ Pr(𝑢 ∈ 𝑉1) ⋅ Pr(𝑣 ∈ 𝑉2 ∣ 𝑢 ∈ 𝑉1) (conditional probability)

= 2 × (1
2

× |𝑉 |/2
|𝑉 | − 1

) = |𝑉 |/2
|𝑉 | − 1

.

By linearity of expectation, summing over all edges:

E[𝑋] = ∑
𝑒∈𝐸

E[𝑋𝑒] = |𝐸| × |𝑉 |/2
|𝑉 | − 1

= |𝐸|
2

⋅ |𝑉 |
|𝑉 | − 1

.

Remarks: This bound is tight for complete graphs, and a bound that is tight for complete
graphs can also be obtained similarly for odd |𝑉 |.
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Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

1 Implement freivalds .

2 Check that you get this output:

('Test 1', True)
('Test 2', True)
('Test 3', True)
('Test 4', True)

https://github.com/eric-vader/nus-cs3230-practical

