
D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

1/22

CS3230
eric_han@nus.edu.sg
https://eric-han.com

Computer Science

T05 – Week 6

D&C, Sorting, and Average-Case Analysis
CS3230 – Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

2/22

Recap from T04

Loop Invariant
Angle-Right GeeksforGeeks – Loop Invariants
Angle-Right StackExchange – Tips for Constructing Basic Loop Invariants

Induction
Angle-Right https://leetcode.com/problem-list/recursion/
Angle-Right Brilliant – Writing a proof by Induction
Angle-Right Khan Academy – Verifying an algorithm (also invariant)

D&C
In general, this requires training your thinking processes (which is v hard):
Angle-Right https://leetcode.com/problem-list/divide-and-conquer/
Angle-Right T04 Q5: Split by the largest direction (row or column).

https://www.geeksforgeeks.org/loop-invariant-condition-examples-sorting-algorithms/
https://math.stackexchange.com/questions/35112/tips-for-constructing-basic-loop-invariants
https://leetcode.com/problem-list/recursion/
https://brilliant.org/wiki/writing-a-proof-by-induction/
https://www.khanacademy.org/computing/ap-computer-science-principles/algorithms-101/evaluating-algorithms/a/verifying-an-algorithm
https://leetcode.com/problem-list/divide-and-conquer/

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

3/22

T04 Q5: How to achieve Θ(𝑛)
Algorithm

1 Split the matrix always in the larger (width or height)
2 Same algorithm as before.

Proof
Assuming 𝑚 > 𝑛, and also vice versa for 𝑛 > 𝑚:

𝑇 (𝑚, 𝑛) = 𝑇 (𝑚
2

, 𝑛) + Θ(𝑛)

= [𝑇 (𝑚
2

, 𝑛
2

) + Θ (𝑚
2

)] + Θ(𝑛)

Since the recurrence reduces by 1/2 in 2 iterations, we obtain1 𝑇 (𝑛) = 𝑇 (𝑛/2) + Θ(𝑛).
Since 𝑎 = 1, 𝑏 = 2, 𝑑 = log2 1 = 0, and 𝑓(𝑛) = 𝑛 ∈ Ω(𝑛𝑑+𝜖) for any 𝜖 > 0. Furthermore,
the regularity condition is satisfied, as: 1 ⋅ 𝑓(𝑛/2) = 𝑛

2 ≤ 𝑐𝑓(𝑛) for 𝑐 = 1
2 < 1.

Thus, by Case 3 of the Master Theorem: 𝑇 (𝑛) = Θ(𝑛).
1You may work it out exactly, but… Lazy.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

4/22

Lecture Review
A decision tree consists of:

Angle-Right Vertices (Internal): A comparison
Angle-Right Branches: Outcome of the comparison
Angle-Right Leaves: Output/decision for the input

1:2

2:3

1,2,3
1:3

1,3,2 3,1,2

1:3

2,1,3
2:3

2,3,1 3,2,1

Figure 1: Worst case runtime is the height of the decision tree.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

5/22

Polynomial Multiplication (Degree 𝑛)
Given two polynomials:

𝐴(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

𝐵(𝑥) = 𝑏𝑛𝑥𝑛 + ⋯ + 𝑏2𝑥2 + 𝑏1𝑥 + 𝑏0

Their product:

𝐶(𝑥) = 𝐴(𝑥) × 𝐵(𝑥) = 𝑐2𝑛𝑥2𝑛 + ⋯ + 𝑐2𝑥2 + 𝑐1𝑥 + 𝑐0

where all coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 are integers.

Brute Force Approach: 𝑂(𝑛2) Complexity

∀𝑖 ∈ [2𝑛..0], 𝑐𝑖 =
𝑛

∑
𝑗=0

𝑎𝑗 ⋅ 𝑏𝑖−𝑗, where 0 ≤ 𝑖 − 𝑗 ≤ 𝑛.

Assuming integer addition and multiplication take 𝑂(1) time, this approach runs in 𝑂(𝑛2).

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

6/22

Brute Force Approach (code)

def poly_mult_bruteforce(A, B):
A: Coeff [a0, a1, ..., a_n] for A(x) = a0 + a1*x + ... + a_n*x^n.
B: Coeff [b0, b1, ..., b_n] for B(x) = b0 + b1*x + ... + b_n*x^n.

n = len(A) - 1 # Degree of the polynomial A or B
result = [0] * (2 * n + 1) # Result in (2n + 1) coefficients

Compute each coefficient c_i for the product polynomial C(x)
for i in range(2 * n + 1):

for j in range(max(0, i - n), min(i, n) + 1):
result[i] += A[j] * B[i - j]

return result

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

7/22

Question 1

Let 𝑥 = 10 to visualize this as base-10 multiplication with 𝑛 = 2.

Given Polynomials

𝐴(10) = 352 = 3 ⋅ 102 + 5 ⋅ 10 + 2, i.e. 𝑎2 = 3, 𝑎1 = 5, 𝑎0 = 2,
𝐵(10) = 221 = 2 ⋅ 102 + 2 ⋅ 10 + 1, i.e. 𝑏2 = 2, 𝑏1 = 2, 𝑏0 = 1.

Compute the coefficients of 𝐶(10) = 𝐴(10) × 𝐵(10) = 77, 792 using the 𝑂(𝑛2)
algorithm.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

8/22

Answer
Using the 𝑂(𝑛2) algorithm, we compute:

𝑐4 = 𝑎2 ⋅ 𝑏4−2 = 𝑎2 ⋅ 𝑏2 = 3 ⋅ 2 = 6.

𝑐3 = 𝑎1 ⋅ 𝑏3−1 + 𝑎2 ⋅ 𝑏3−2 = 𝑎1 ⋅ 𝑏2 + 𝑎2 ⋅ 𝑏1

= 5 ⋅ 2 + 3 ⋅ 2 = 10 + 6 = 16.

𝑐2 = 𝑎0 ⋅ 𝑏2−0 + 𝑎1 ⋅ 𝑏2−1 + 𝑎2 ⋅ 𝑏2−2

= 𝑎0 ⋅ 𝑏2 + 𝑎1 ⋅ 𝑏1 + 𝑎2 ⋅ 𝑏0

= 2 ⋅ 2 + 5 ⋅ 2 + 3 ⋅ 1 = 4 + 10 + 3 = 17.

𝑐1 = 𝑎0 ⋅ 𝑏1−0 + 𝑎1 ⋅ 𝑏1−1 = 𝑎0 ⋅ 𝑏1 + 𝑎1 ⋅ 𝑏0

= 2 ⋅ 2 + 5 ⋅ 1 = 4 + 5 = 9.

𝑐0 = 𝑎0 ⋅ 𝑏0−0 = 𝑎0 ⋅ 𝑏0 = 2 ⋅ 1 = 2.

Hence, 𝐶(10) = 6 ⋅ 104 + 16 ⋅ 103 + 17 ⋅ 102 + 9 ⋅ 10 + 2 = 77 792.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

9/22

Question 2

D&C Algorithm
1 Rewrite the polynomials:

𝐴(𝑥) = 𝑥 𝑛
2 ⋅ 𝐴1(𝑥) + 𝐴2(𝑥), 𝐵(𝑥) = 𝑥 𝑛

2 ⋅ 𝐵1(𝑥) + 𝐵2(𝑥)

where 𝐴1(𝑥), 𝐴2(𝑥), 𝐵1(𝑥), 𝐵2(𝑥) are polynomials of degree at most 𝑛
2 .

2 Compute four smaller polynomial multiplications:

𝐴1(𝑥) × 𝐵1(𝑥), 𝐴1(𝑥) × 𝐵2(𝑥), 𝐴2(𝑥) × 𝐵1(𝑥), 𝐴2(𝑥) × 𝐵2(𝑥)

3 Compute the final polynomial:

𝐶(𝑥) = 𝑥𝑛 ⋅[𝐴1(𝑥)×𝐵1(𝑥)]+𝑥 𝑛
2 ⋅[𝐴1(𝑥)×𝐵2(𝑥)+𝐴2(𝑥)×𝐵1(𝑥)]+𝐴2(𝑥)×𝐵2(𝑥)

Use this algorithm to multiply two polynomials of degree 𝑛 = 2.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

10/22

Answer
Given: 𝐴(10) = 352 = 10 ⋅ (3 ⋅ 10 + 5) + 2, 𝐵(10) = 221 = 10 ⋅ (2 ⋅ 10 + 2) + 1

Computing Partial Products

𝐴1(10) × 𝐵1(10) = (3 ⋅ 10 + 5) × (2 ⋅ 10 + 2)
= 6 ⋅ 102 + 16 ⋅ 10 + 10
= 600 + 160 + 10 = 770.

𝐴1(10) × 𝐵2(10) = (3 ⋅ 10 + 5) × 1
= 3 ⋅ 10 + 5 = 35.

𝐴2(10) × 𝐵1(10) = 2 × (2 ⋅ 10 + 2)
= 4 ⋅ 10 + 4 = 44.

𝐴2(10) × 𝐵2(10) = 2 × 1 = 2.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

11/22

Compute the final polynomial

𝐶(10) = 102 ⋅ (𝐴1(10) × 𝐵1(10))
+ 10 ⋅ (𝐴1(10) × 𝐵2(10) + 𝐴2(10) × 𝐵1(10))
+ 𝐴2(10) × 𝐵2(10)

= 102 ⋅ (6 ⋅ 102 + 16 ⋅ 10 + 10)
+ 10 ⋅ (3 ⋅ 10 + 5 + 4 ⋅ 10 + 4) + 2

= 6 ⋅ 104 + 16 ⋅ 103 + 10 ⋅ 102 + 7 ⋅ 102 + 9 ⋅ 10 + 2

= 6 ⋅ 104 + 16 ⋅ 103 + 17 ⋅ 102 + 9 ⋅ 10 + 2

= 60 000 + 16 000 + 1 700 + 90 + 2

= 77 992

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

12/22

Question 3 [P1]

What is the time complexity of that recursive D&C algorithm?

Answer

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛/2) + 𝑂(𝑛).

Angle-Right There are 4 multiplications of polynomials of degree 𝑛
2 .

Angle-Right Combining results requires 𝑂(𝑛) work.
Since 𝑎 = 4, 𝑏 = 2, and 𝑑 = log2 4 = 2, and 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖) for some 𝜖 > 0,
by Case 1 of the Master Theorem, we get:

𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛2).

Thus, this is no better than naive polynomial multiplication.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

12/22

Question 3 [P1]

What is the time complexity of that recursive D&C algorithm?

Answer

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛/2) + 𝑂(𝑛).

Angle-Right There are 4 multiplications of polynomials of degree 𝑛
2 .

Angle-Right Combining results requires 𝑂(𝑛) work.
Since 𝑎 = 4, 𝑏 = 2, and 𝑑 = log2 4 = 2, and 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖) for some 𝜖 > 0,
by Case 1 of the Master Theorem, we get:

𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛2).

Thus, this is no better than naive polynomial multiplication.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

13/22

Question 4 [P2]
Karatsuba Algorithm

1 Compute two smaller polynomial multiplications:

𝐴1(𝑥) × 𝐵1(𝑥), 𝐴2(𝑥) × 𝐵2(𝑥).

2 Compute one multiplication with two additions:

[𝐴1(𝑥) + 𝐴2(𝑥)] × [𝐵1(𝑥) + 𝐵2(𝑥)].

3 Apply the identity, two subtractions

𝐴1(𝑥) × 𝐵2(𝑥) + 𝐴2(𝑥) × 𝐵1(𝑥) = [𝐴1(𝑥) + 𝐴2(𝑥)] × [𝐵1(𝑥) + 𝐵2(𝑥)]
− 𝐴1(𝑥) × 𝐵1(𝑥) − 𝐴2(𝑥) × 𝐵2(𝑥).

4 Compute 𝐶(𝑥)
What is the time complexity of Karatsuba’s algorithm?

https://en.wikipedia.org/wiki/Karatsuba_algorithm

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

14/22

Answer

𝑇 (𝑛) = 3 ⋅ 𝑇 (𝑛/2) + 𝑂(𝑛).

Angle-Right Now, there are only 3 multiplications of polynomials of degree 𝑛
2 .

Angle-Right Additional work still takes 𝑂(𝑛).
Since 𝑎 = 3, 𝑏 = 2, and 𝑑 = log2 3 = 1.58 …, and 𝑓(𝑛) = 𝑂(𝑛) = 𝑂(𝑛𝑑−𝜖) for some
𝜖 > 0, by Case 1 of the Master Theorem, we get:

𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛log2 3) = Θ(𝑛1.58…).

Remarks
Angle-Right Practical Application: This method is in CPython for multiplying large integers.
Angle-Right Beyond Karatsuba: Can be improved further to 𝑂(𝑛 log 𝑛) using more advanced

techniques.

https://github.com/python/cpython/blob/main/Objects/longobject.c

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

14/22

Answer

𝑇 (𝑛) = 3 ⋅ 𝑇 (𝑛/2) + 𝑂(𝑛).

Angle-Right Now, there are only 3 multiplications of polynomials of degree 𝑛
2 .

Angle-Right Additional work still takes 𝑂(𝑛).
Since 𝑎 = 3, 𝑏 = 2, and 𝑑 = log2 3 = 1.58 …, and 𝑓(𝑛) = 𝑂(𝑛) = 𝑂(𝑛𝑑−𝜖) for some
𝜖 > 0, by Case 1 of the Master Theorem, we get:

𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛log2 3) = Θ(𝑛1.58…).

Remarks
Angle-Right Practical Application: This method is in CPython for multiplying large integers.
Angle-Right Beyond Karatsuba: Can be improved further to 𝑂(𝑛 log 𝑛) using more advanced

techniques.

https://github.com/python/cpython/blob/main/Objects/longobject.c

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

15/22

Question 5 [G]/[P3]

You are given 243 balls, where one is heavier while the rest have the same weight.
You (your friend) have a balance scale and must determine the heavier ball while
minimizing the worst-case number of weighings.

Angle-Right The balance scale provides only comparison results (<, =, or >).
Angle-Right Each weighing has a cost.

With these information,

a. What is the minimum number of weighings needed?
b. What is the lower bound for any algorithm solving this problem?

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

16/22

Answer

Minimum Number of Weighings
1 Divide the balls into three equal groups: 𝐴, 𝐵, and 𝐶.
2 Weigh group 𝐴 against group 𝐵.

Angle-Double-Right If 𝐴 = 𝐵, the heavier ball is in group 𝐶.
Angle-Double-Right If 𝐴 > 𝐵, the heavier ball is in group 𝐴.
Angle-Double-Right If 𝐴 < 𝐵, the heavier ball is in group 𝐵.

Each weighing reduces the balls by 1/3, which goes:

243
1st
−→ 81

2nd
−−→ 27

3rd
−→ 9

4th
−→ 3

5th
−→ 1.

After 5 weighings, the last ball must be the heavier one.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

17/22

Optimal Weighings

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 2: 33 = 27 possible outcomes, with 3 weighings.

Angle-Right Each weighing divides the balls into at most2 3 groups.
Angle-Right A full ternary tree of height ℎ has at most: 3ℎ leaves.
Angle-Right Since there are 243 possible outcomes, a tree of height 4 is insufficient.
Angle-Right Thus, at least 5 weighings are necessary.

2weighings may not divide the balls into three

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

18/22

Question 6 [G]

You are given an array 𝐴[1..𝑛] that is sorted in non-increasing order. Your task is to find
the largest index 𝑖 such that 𝐴[𝑖] ≥ 𝑖. Design an efficient algorithm to solve this problem.

To guide your approach, consider the following properties of the sorted array:

Angle-Right If 𝐴[𝑗] ≥ 𝑗, then it must hold that (left) 𝐴[𝑗 − 1] ≥ 𝑗 − 1, unless 𝑗 = 1.
Angle-Right If 𝐴[𝑗] < 𝑗, then it must follow that (right) 𝐴[𝑗 + 1] < 𝑗 + 1, unless 𝑗 = 𝑛.

For ease of notation, assume that the array is extended such that 𝐴[0] > 0 and
𝐴[𝑛 + 1] < 𝑛 + 1. Thus, there is a unique 𝑖 such that 𝐴[𝑖] ≥ 𝑖 but 𝐴[𝑖 + 1] < 𝑖 + 1.

A0 A1 · · · Ai Ai+1 Ai+2 · · · An An+1

> 0 < n+ 1
A[i] ≥ i A[i+ 1] < i+ 1

Figure 3: Key observation: Red implies left is red, Blue implies right is blue.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

19/22

Answer

Method 1: Linear Search
Angle-Right Perform a linear search to find the largest 𝑖 such that 𝐴[𝑖] ≥ 𝑖.
Angle-Right This takes 𝑂(𝑛) time.

Method 2: Binary Search
Angle-Right Use binary search, leveraging the given properties of the array.
Angle-Right This reduces the time complexity to 𝑂(log 𝑛).

Method 3: Exponential Search + Binary Search
1 Find the smallest 𝑘 where 𝐴[2𝑘] < 2𝑘 by testing 𝑘 = 0, 1, 2, ….

Angle-Double-Right If 𝑘 = 0, we are already done.
Angle-Double-Right Otherwise, this ensures that 𝐴[2𝑘] < 2𝑘 while 𝐴[2𝑘−1] ≥ 2𝑘−1.

2 Apply binary search in the range [2𝑘−1, 2𝑘] to find the largest 𝑖 such that 𝐴[𝑖] ≥ 𝑖.
3 This approach runs in 𝑂(log 𝑖) time, where 𝑖 is the final answer.

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

20/22

Question 7 [G]
Bogosort repeatedly shuffles the array until it happens to be sorted. Analyze its best-case,
worst-case, and average-case time complexity for an array of length 𝑛.

Algorithm 1: Bogosort(𝐴[0..𝑛 − 1])
1 while not IsSorted(𝐴) do
2 RandomlyShuffle(𝐴)
3 return 𝐴
4 Function IsSorted(𝐴):
5 for 𝑖 ← 1 to 𝑛 − 1 do
6 if 𝐴[𝑖] < 𝐴[𝑖 − 1] then
7 return false

8 return true

Note: RandomlyShuffle runs in 𝑂(𝑛) using the Fisher-Yates shuffle.

https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

21/22

Answer

Best-case
Angle-Right If the array is already sorted, only one IsSorted check is needed.
Angle-Right Time complexity: 𝑂(𝑛).

Worst-case
Angle-Right Unbounded; the algorithm may never terminate as shuffles are random.

Average-case
Angle-Right 𝑛! possible permutations, (assume) each equally likely.
Angle-Right Probability of a correct permutation in one shuffle: 1/𝑛!
Angle-Right Expected number of iteration: 𝑛!,

Angle-Double-Right 𝑂(𝑛) for RandomlyShuffle and
Angle-Double-Right 𝑂(𝑛) for IsSorted.

Angle-Right Total expected runtime: 𝑂(𝑛 ⋅ 𝑛!).

D
&

C,
So

rt
in

g,
an

d
Av

er
ag

e-
Ca

se
A

na
ly

sis
—

CS
32

30

22/22

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

1 Bruteforce implementation is given, poly_mult_bruteforce .

2 Implement the D&C algorithm in code, poly_mult_dc .

3 Check that you get this output:

Brute force result: [2, 9, 17, 16, 6]
Divide and Conquer result: [2, 9, 17, 16, 6]

https://github.com/eric-vader/nus-cs3230-practical

