CS3230

eric_han@nus.edu.sg

? NUS | Computing https://eric-han.com

National University |
of Singapore Computer Science

T04 — Week 5

Correctness and Divide-and-conquer
CS53230 — Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com

Admin

Assignment 2 scores with comments are published, can be found on Canvas.

CS3230

> Comments have been given
> Any queries please approach me (after class or on telegram)

Assignment 3 due this weekend.

General comments
> A2 Q2: on proving f(n) = 3f(n/3) +n — closed form f(n) = nlog, n.
»> Cannot use MT here. We asked for exact, not a bound.
» Must use any techniques that give exact closed form.

.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
0
o)
o
=
]
()

2/21

.
[
3
o
c
S
i

©
c
@
b

2

2

o

o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}

()

Lecture Review

Proof of Correctness
> lterative Algorithm: Prove with a loop invariant:
Initialization: True before iteration 1.
Maintenance: True for iteration x+ = true for x + 1.
Termination: Ensures correctness at the end.
> Recursive Algorithm: Prove by induction:
Base Case: Correct for trivial cases.

Inductive Step: Assume smaller cases are correct, prove for current case.

Divide-and-conquer (D&C)
Divide: Break the problem into smaller sub-problems.
Conquer: Solve sub-problems recursively.
Combine (optional): Merge sub-problem solutions.

E.g., Merge Sort: Split into halves, sort recursively, merge results.

3/21

Question 1 [G]/[P1]

Algorithm 1: InsertionSort(A[0..N — 1])

fori=1to N —1do // outer For loop i
8 Let X = Ali] // X is the next item to insert into A[0..i — 1]
g for j =7 — 1 down to 0 do // inner For loop j

if A[j] > X then

| | A[j+ 1] = A[j] // Make space for X
g else
5 | break
i Aj+1]=X // Insert X at index j + 1
$ L
% Recap
9 > What is the intuition behind insertion sort?
% > What is a good/bad invariant?

4/21

CS3230

.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

Assuming the inner loop for index j is correct (i.e., assuming A[0.. — 1] is sorted and
places A[i] in its correct position without affecting A[i + 1..N — 1]):

Bl What is the suitable loop invariant for the outer for loop 27
B Show the invariant after initialization, maintenance, and termination.

Question 1 Optional
What is a suitable invariant for the inner for loop?

5/21

.
[
3
o
c
<)
i

©
c
°
b

2

2

o

o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}

()

Answer 1la
Let B represent the original (unsorted) array A (or imagine copying A into B at the
beginning). This allows us to reference the original values more easily.

Outer Loop Invariant
AJ0..i — 1] is the sorted version of B[0..i — 1].
Ali..N — 1] = B[i..N — 1] (the portion of the array from i to N — 1 remains
unchanged and matches the original values in B).
Original Array B:

[Bo| - [Ba[Bif - [Bno

Current Array A:

LA [- JA[A] - [An
Sorted Unchanged

Figure 1: Illustration of outer loop invariant.

6/21

Answer 1b
Initialization:
» When ¢ = 1, A[0] = B[0] is a single integer and sorted by default.
» The rest of the array remains unchanged: A[1..N — 1] = B[1..N —1].
Maintenance:
» Assuming the invariant holds at the start of iteration ¢, we have:
m A[0..¢ — 1] is sorted B[0..7 — 1].
m A[i..N — 1] = B[i..N — 1] is not sorted.
% After the inner loop places X at its correct position, without affecting Afi +1..N — 1].
» This ensures A[0..7] is the sorted version of B|0..q].
Termination:
» Ati= N —1, the invariant guarantees A[0..N — 1] is the sorted version of B[0..N — 1],
proving the algorithm’s correctness.

.
[
3
o
c
S
i

©
c
@
b

2

2

o

o
=
©
wn
wn
[}
=
5
0
o)
o
=
]

()

7/21

o
%
I
[0}
n
O

.
[
3
o
c
<)
i
©
c
°
b

2
2
o
o

=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

1
2
3

4
5

6

7

Question 2

Algorithm 2: StoogeSort(A)

Let n be the length of array A
if n =2 and A[0] > A[1] then
L Swap A[0] and A[1]
if n > 2 then
Apply StoogeSort to sort the first [2n/3] elements recursively
Apply StoogeSort to sort the last [2n/3] elements recursively
Apply StoogeSort to sort the first [2n/3] elements recursively

B Prove that StoogeSort(A) correctly sorts the input array A.

For the sake of simplicity, you may assume that all numbers in A are distinct.

B Analyze the time complexity of StoogeSort(A).

8/21

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

Answer 2a
We prove the correctness of the algorithm by an induction on the array size n.

Base Case
> If n =1, the algorithm is trivially correct since the array is already sorted.
> If n = 2, the algorithm is correct due to Step 2.

Inductive Step

Assume the algorithm is correct for any array of size smaller than n.
Observation: Let r =n — [2n/3]| = |n/3]. After Step 5: - The r largest numbers of A
are in the final [2n/3] entries of A; Then:

After Step 6, the r largest numbers of A are correctly sorted.

Before Step 7, the initial n — r numbers are the [2n/3] first entries of A.

After Step 7, these [2n/3| numbers are also correctly sorted.

9/21

Proof of Observation
Let 2 be any number in the set of 7 largest numbers of A. We show that must be in the
final [2n/3] entries of A after Step 5:
> Case 1: Suppose z is not one of the initial [2n/3] numbers of A before Step 5.
» The algorithm of Step 5 does not change the position of x,
» so x is still in the final n — [2n/3] < [2n/3] entries of A after Step 5.
> Case 2: Suppose z is one of the initial [2n/3] numbers of A before Step 5.
» Among these [2n/3] numbers, at least [2n/3] — r > r of them are smaller than x.
» Therefore, after Step 5, x is not in the initial entries of A. In other words, x is in the
final n — r = [2n/3] entries of A after Step 5.
Hence, by induction, the algorithm is correct.

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
°
b
2
2
o
o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

10/21

Answer 2b
The runtime T'(n) of the algorithm for an array of size n is given by the recurrence:

T(n) = O(1) if n <2,
(n) = 3T([2n/3]) + O(1) ifn > 2.

Sincea=3,b=23/2, and d = log, , 3~ 2.7095 ... and f(n) € O(n%=¢) for some
0.5 =€ > 0, by Case 1 of the Master Theorem:

T(n) € O(nlogba> _ O(n2'7095“‘).

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
0
o)
o
=
]
()

11/21

Answer 2b
The runtime T'(n) of the algorithm for an array of size n is given by the recurrence:

T(n) = O(1) if n <2,
(n) = 3T([2n/3]) + O(1) ifn > 2.

Sincea=3,b=23/2, and d = log, , 3~ 2.7095 ... and f(n) € O(n%=¢) for some
0.5 =€ > 0, by Case 1 of the Master Theorem:

T(n) € O(nlogba> _ O(n2'7095“‘).

Question 2 Optional
Why does choosing [2n/3] in the algorithm make sense?

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
0
o)
o
=
]
()

11/21

The Peak Finding Problem

Given a 2D array with m rows and n columns,

> where each cell contains a number,
> a peak is a cell whose value is no smaller than all of its (up to) four neighbors: top,
right, bottom, and left.

Example
In the m x n =3 x 5 grid below, there are 5 peaks (marked with *):
6 8x 7 Tx 1

9% 3 1 7% 3
8 4 5%x3 2

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

12/21

Question 3 [G]/[P2]

Show that there is a peak in every 2D array!

o
%
I
[0}
n
O
.
[
3
o
c
S
?
©
c
@
b
2
=
o
o
e
(]
w
wn
[}
=
5
O
(9]
o
=
]
()

13/21

Question 3 [G]/[P2]

CS3230

Show that there is a peak in every 2D array!

Answer
> Since any 2D array must contain at least one maximal element,
> and a maximal element is no smaller than any other cell (including its four neighbors),
> all maximal elements are peaks.

.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
0
o)
o
=
]
()

13/21

Find Peak Algorithm

We aim to design a recursive algorithm FindPeakSp to find any peak.

Special-Peak Definition

Note: FindPeakSp finds a Special kind of peak element. This element is both a peak and
the maximal element in its column. We refer to this as a special-peak.

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
0
o)
o
=
]
()

14/21

Algorithm 3: FindPeakSp(A)

if A hasn = 1 column then
L return a maximal element in the column

if A hasn > 2 columns then

Let C,,, be the middle column of A

Find a maximal element in C,,

if the above maximal element in C,,, is a peak then
‘ return that element

else

X < FindPeakSp(Left_Half_of_A_without_C,,)
Y < FindPeakSp(Right_Half_of_A_without_C,,,)
if X orY is a peak then

| return the peak (X or Y)

else
L return None // See Question Q3

o
%
I
[0}
n
O
.
[
3
o
c
<)
i
©
c
°
b
2
2
o
o
=
©
wn
wn
[
=
5
5}
@
o
=
s}
()

15/21

Question 4 [P3]

What is the runtime complexity of the FindPeakSp(A) algorithm?

—
o
3
o
c
o
?

-]
c
P
]

2

2

o

Ee]
e
(]
w
wn
9]
c
=
9]
9]
2
=
o

)

16,21

Question 4 [P3]

What is the runtime complexity of the FindPeakSp(A) algorithm?

Answer

Finding the maximal element in a column takes ©(m) (as there are m rows). The total
complexity depends on how many columns are processed, scaled by ©(m).

Column Processing Complexity

Let T'(n) represent the number of columns to be processed:

T(m,n) =2 T(m,n/2) +k-m = T(n) = 2-T<g> +1
Sincea =2,b=2,d=1log,2=1, and f(n) € O(n?=¢) for some 0.5 = € > 0, by Case 1
of the Master Theorem, then T'(n) € O(n?) = ©(n'*¢22) = O(n).

Overall Runtime

T(n) x ©(m) =0(n) x O(m) = O(nm)

o
%
I
[0}
n
O

.
[
3
o
c
S
i
©
c
@
b

2
2
o
o

=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

16,21

Question 5 [G]

Argue why FindPeakSp(A) will never return None (i.e., always returns a peak).
Additionally, discuss whether any steps within the ‘else’ condition in Step 8 can be
optimized (faster asymptotically).

.
[
3
o
c
S
i

©
c
@
b

2

2

o

o
=
©
wn
wn
[}
=
5
0
o)
o
=
]

()

17/21

Question 5 [G]

Argue why FindPeakSp(A) will never return None (i.e., always returns a peak).
Additionally, discuss whether any steps within the ‘else’ condition in Step 8 can be
optimized (faster asymptotically).

Answer
The argument shows that Steps 9 and 10 can be skipped, optimizing our algorithm.

Never Return None <= Special-Peak Exists

If Step 8 is reached, the maximal element W in column k is not a peak, then:

> Only the right neighbor of W is larger.

> Only the left neighbor of W is larger (symmetric).

> Both the left and right neighbors of W are larger (covered by cases above).
We focus on the case where W's right neighbor X (in column k + 1) is larger. This
ensures a special-peak exists in columns > k.

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
°
b
2
2
o
o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

17/21

1 -k kE+1 - n Right Neighbor of W is Larger

1r i > Then, X > W.
a w X c
d f g h - Special-Peak in A’
If special-peak in column:
P q T > >k + 1: Its a special-peak of A.
s t|Y A U > k+ 1: Adjacent to column k:
m Leee e | e v een % Z is the max in column k + 1,

» So Z > X: X isright of W.

Figure 2: Illustration of the right neighbor ?» Zis not smaller than its top,

. . . /
scenario — Subarray A’ = A[l..m][k + 1..n]. 5 Wgtsqnsétoéhz;itttEzllger:‘f%rzigl?mljcl)r:

B Show Z > Yin column k:
m Since X > W and Z > X,
BZ>X>W2>Y.

% Z is a special-peak of A.

Thus, Z is a special-peak of A.

.
[
3
o
c
S
i

©
c
@
b

2

2

o

o
=
©
wn
wn
[}
=
5
0
o)
g
=
]

()

18/21

Steps to optimize
How does this translate to optimizing (improving) the else condition in Step 87

.
[
3
o
c
S
?

©
c
@
b

2

2

o

o
=
©
wn
wn
[}
=
5
0
o)
o
=
]

()

19/21

Steps to optimize
How does this translate to optimizing (improving) the else condition in Step 87
Algorithm 5: FindPeakSp-Imp(A)

1 if A hasn =1 column then

Sl 2 L return a maximal element in the column

5 3 if A hasn > 2 columns then

N ¢ Let C,,, be the middle column of A

. 5 Find a maximal element in C,,

j% 6 if the above maximal element in C,,, is a peak then

N 7 ‘ return that element

E 8 else

é 9 if the right neighbor of the above maximal element in C,, is larger then
=l 10 ‘ return FindPeakSp-Imp(Right_Half_of_A_without_C,,,)

B else

% 12 L return FindPeakSp-Imp(Left_Half_of_A_without_C,,,)

3 L

3 19/21

o
%
I
[0}
n
O

.
[
3
o
c
S
i
©
c
@
b

2
2
o
o

=
©
wn
wn
[}
=
5
0
o)
o
=
]
()

Asymptotic Behavior
Let T'(n) be the number of columns processed, with the recurrence:

T(n)=T(n/2) + 1.

Sincea=1,b=2,d=0, and f(n) € O(n?), by Case 2 of the Master Theorem:

T(n) € O(logn).

Thus, the algorithm runs in:
T(n) x O(m) =O(logn) x O(m) = O(mlogn),

which is asymptotically faster.

20/21

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
0
o)
o
=
]
()

Asymptotic Behavior
Let T'(n) be the number of columns processed, with the recurrence:

T(n)=T(n/2) + 1.
Sincea=1,b=2,d=0, and f(n) € O(n?), by Case 2 of the Master Theorem:
T(n) € ©(logn).

Thus, the algorithm runs in:

T(n) x O(m) =O(logn) x O(m) = O(mlogn),

which is asymptotically faster.

Question 5 Optional [Snack]
Is this ©(mlogn) algorithm the best possible solution?

20/21

o
%
I
[0}
n
O
.
[
3
o
c
S
i
©
c
@
b
2
2
o
o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}
()

Asymptotic Behavior
Let T'(n) be the number of columns processed, with the recurrence:

T(n)=T(n/2) + 1.
Sincea=1,b=2,d=0, and f(n) € O(n?), by Case 2 of the Master Theorem:
T(n) € ©(logn).

Thus, the algorithm runs in:

T(n) x O(m) =O(logn) x O(m) = O(mlogn),

which is asymptotically faster.

Question 5 Optional [Snack]
Is this ©(mlogn) algorithm the best possible solution? We can achieve ©(n) - How?

20/21

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!
Implement Algorithm 3 in code, find_peak_sp to return a special peak.

Check that you get this output:

Test 6: Matrix

6 8x 7 T7x 1

9% 3 1 7% 3

8 4 5% 3 2

Peak found at (0, 1) with value 8

.
[
3
o
c
S
i

©
c
@
b

2

2

o

o
=
©
wn
wn
[}
=
5
5}
@
o
=
s}

()

21/21

https://github.com/eric-vader/nus-cs3230-practical

