
Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

1/21

CS3230
eric_han@nus.edu.sg

https://eric-han.com

Computer Science

T04 – Week 5

Correctness and Divide-and-conquer
CS3230 – Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com


Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

2/21

Admin

Assignment 2 scores with comments are published, can be found on Canvas.

Angle-Right Comments have been given
Angle-Right Any queries please approach me (after class or on telegram)

Assignment 3 due this weekend.

General comments
Angle-Right A2 Q2: on proving 𝑓(𝑛) = 3𝑓(𝑛/3) + 𝑛 – closed form 𝑓(𝑛) = 𝑛 log3 𝑛.

Angle-Double-Right Cannot use MT here. We asked for exact, not a bound.
Angle-Double-Right Must use any techniques that give exact closed form.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

3/21

Lecture Review

Proof of Correctness
Angle-Right Iterative Algorithm: Prove with a loop invariant:

1 Initialization: True before iteration 1.
2 Maintenance: True for iteration 𝑥 ⟹ true for 𝑥 + 1.
3 Termination: Ensures correctness at the end.

Angle-Right Recursive Algorithm: Prove by induction:
1 Base Case: Correct for trivial cases.
2 Inductive Step: Assume smaller cases are correct, prove for current case.

Divide-and-conquer (D&C)
1 Divide: Break the problem into smaller sub-problems.
2 Conquer: Solve sub-problems recursively.
3 Combine (optional): Merge sub-problem solutions.

E.g., Merge Sort: Split into halves, sort recursively, merge results.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

4/21

Question 1 [G]/[P1]

Algorithm 1: InsertionSort(𝐴[0..𝑁 − 1])
1 for 𝑖 = 1 to 𝑁 − 1 do // outer For loop 𝑖
2 Let 𝑋 = 𝐴[𝑖] // 𝑋 is the next item to insert into 𝐴[0..𝑖 − 1]
3 for 𝑗 = 𝑖 − 1 down to 0 do // inner For loop 𝑗
4 if 𝐴[𝑗] > 𝑋 then
5 𝐴[𝑗 + 1] = 𝐴[𝑗] // Make space for 𝑋
6 else
7 break

8 𝐴[𝑗 + 1] = 𝑋 // Insert 𝑋 at index 𝑗 + 1

Recap
Angle-Right What is the intuition behind insertion sort?
Angle-Right What is a good/bad invariant?



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

5/21

Assuming the inner loop for index 𝑗 is correct (i.e., assuming 𝐴[0..𝑖 − 1] is sorted and
places 𝐴[𝑖] in its correct position without affecting 𝐴[𝑖 + 1..𝑁 − 1]):

a. What is the suitable loop invariant for the outer for loop 𝑖?
b. Show the invariant after initialization, maintenance, and termination.

Question 1 Optional
What is a suitable invariant for the inner for loop?



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

6/21

Answer 1a
Let 𝐵 represent the original (unsorted) array 𝐴 (or imagine copying 𝐴 into 𝐵 at the
beginning). This allows us to reference the original values more easily.

Outer Loop Invariant
1 𝐴[0..𝑖 − 1] is the sorted version of 𝐵[0..𝑖 − 1].
2 𝐴[𝑖..𝑁 − 1] = 𝐵[𝑖..𝑁 − 1] (the portion of the array from 𝑖 to 𝑁 − 1 remains

unchanged and matches the original values in 𝐵).
Original Array B:

B0
. . . Bi−1 Bi

. . . BN−1

Current Array A:

A0
. . . Ai−1 Ai

. . . AN−1

Sorted Unchanged

Figure 1: Illustration of outer loop invariant.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

7/21

Answer 1b
1 Initialization:

Angle-Double-Right When 𝑖 = 1, 𝐴[0] = 𝐵[0] is a single integer and sorted by default.
Angle-Double-Right The rest of the array remains unchanged: 𝐴[1..𝑁 − 1] = 𝐵[1..𝑁 − 1].

2 Maintenance:
Angle-Double-Right Assuming the invariant holds at the start of iteration 𝑖, we have:

𝐴[0..𝑖 − 1] is sorted 𝐵[0..𝑖 − 1].
𝐴[𝑖..𝑁 − 1] = 𝐵[𝑖..𝑁 − 1] is not sorted.

Angle-Double-Right After the inner loop places 𝑋 at its correct position, without affecting 𝐴[𝑖 + 1..𝑁 − 1].
Angle-Double-Right This ensures 𝐴[0..𝑖] is the sorted version of 𝐵[0..𝑖].

3 Termination:
Angle-Double-Right At 𝑖 = 𝑁 − 1, the invariant guarantees 𝐴[0..𝑁 − 1] is the sorted version of 𝐵[0..𝑁 − 1],

proving the algorithm’s correctness.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

8/21

Question 2

Algorithm 2: StoogeSort(𝐴)
1 Let 𝑛 be the length of array 𝐴
2 if 𝑛 = 2 and 𝐴[0] > 𝐴[1] then
3 Swap 𝐴[0] and 𝐴[1]
4 if 𝑛 > 2 then
5 Apply StoogeSort to sort the first ⌈2𝑛/3⌉ elements recursively
6 Apply StoogeSort to sort the last ⌈2𝑛/3⌉ elements recursively
7 Apply StoogeSort to sort the first ⌈2𝑛/3⌉ elements recursively

a. Prove that StoogeSort(𝐴) correctly sorts the input array 𝐴.
For the sake of simplicity, you may assume that all numbers in 𝐴 are distinct.

b. Analyze the time complexity of StoogeSort(𝐴).



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

9/21

Answer 2a
We prove the correctness of the algorithm by an induction on the array size 𝑛.

Base Case
Angle-Right If 𝑛 = 1, the algorithm is trivially correct since the array is already sorted.
Angle-Right If 𝑛 = 2, the algorithm is correct due to Step 2.

Inductive Step
Assume the algorithm is correct for any array of size smaller than 𝑛.
Observation: Let 𝑟 = 𝑛 − ⌈2𝑛/3⌉ = ⌊𝑛/3⌋. After Step 5: - The 𝑟 largest numbers of 𝐴
are in the final ⌈2𝑛/3⌉ entries of 𝐴; Then:

1 After Step 6, the 𝑟 largest numbers of 𝐴 are correctly sorted.
2 Before Step 7, the initial 𝑛 − 𝑟 numbers are the ⌈2𝑛/3⌉ first entries of 𝐴.
3 After Step 7, these ⌈2𝑛/3⌉ numbers are also correctly sorted.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

10/21

Proof of Observation
Let 𝑥 be any number in the set of 𝑟 largest numbers of 𝐴. We show that 𝑥 must be in the
final ⌈2𝑛/3⌉ entries of 𝐴 after Step 5:
Angle-Right Case 1: Suppose 𝑥 is not one of the initial ⌈2𝑛/3⌉ numbers of 𝐴 before Step 5.

Angle-Double-Right The algorithm of Step 5 does not change the position of 𝑥,
Angle-Double-Right so 𝑥 is still in the final 𝑛 − ⌈2𝑛/3⌉ ≤ ⌈2𝑛/3⌉ entries of 𝐴 after Step 5.

Angle-Right Case 2: Suppose 𝑥 is one of the initial ⌈2𝑛/3⌉ numbers of 𝐴 before Step 5.
Angle-Double-Right Among these ⌈2𝑛/3⌉ numbers, at least ⌈2𝑛/3⌉ − 𝑟 ≥ 𝑟 of them are smaller than 𝑥.
Angle-Double-Right Therefore, after Step 5, 𝑥 is not in the initial 𝑟 entries of 𝐴. In other words, 𝑥 is in the

final 𝑛 − 𝑟 = ⌈2𝑛/3⌉ entries of 𝐴 after Step 5.
Hence, by induction, the algorithm is correct.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

11/21

Answer 2b
The runtime 𝑇 (𝑛) of the algorithm for an array of size 𝑛 is given by the recurrence:

𝑇 (𝑛) = {
𝑂(1) if 𝑛 ≤ 2,
3𝑇 (⌈2𝑛/3⌉) + 𝑂(1) if 𝑛 > 2.

Since 𝑎 = 3, 𝑏 = 3/2, and 𝑑 = log3/2 3 ≈ 2.7095 … and 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖) for some
0.5 = 𝜖 > 0, by Case 1 of the Master Theorem:

𝑇 (𝑛) ∈ 𝑂(𝑛log𝑏 𝑎) = 𝑂(𝑛2.7095…).

Question 2 Optional
Why does choosing ⌈2𝑛/3⌉ in the algorithm make sense?



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

11/21

Answer 2b
The runtime 𝑇 (𝑛) of the algorithm for an array of size 𝑛 is given by the recurrence:

𝑇 (𝑛) = {
𝑂(1) if 𝑛 ≤ 2,
3𝑇 (⌈2𝑛/3⌉) + 𝑂(1) if 𝑛 > 2.

Since 𝑎 = 3, 𝑏 = 3/2, and 𝑑 = log3/2 3 ≈ 2.7095 … and 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖) for some
0.5 = 𝜖 > 0, by Case 1 of the Master Theorem:

𝑇 (𝑛) ∈ 𝑂(𝑛log𝑏 𝑎) = 𝑂(𝑛2.7095…).

Question 2 Optional
Why does choosing ⌈2𝑛/3⌉ in the algorithm make sense?



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

12/21

The Peak Finding Problem

Given a 2D array with 𝑚 rows and 𝑛 columns,

Angle-Right where each cell contains a number,
Angle-Right a peak is a cell whose value is no smaller than all of its (up to) four neighbors: top,

right, bottom, and left.

Example
In the 𝑚 × 𝑛 = 3 × 5 grid below, there are 5 peaks (marked with * ):

6 8* 7 7* 1
9* 3 1 7* 3
8 4 5* 3 2



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

13/21

Question 3 [G]/[P2]

Show that there is a peak in every 2D array!

Answer
Angle-Right Since any 2D array must contain at least one maximal element,
Angle-Right and a maximal element is no smaller than any other cell (including its four neighbors),
Angle-Right all maximal elements are peaks.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

13/21

Question 3 [G]/[P2]

Show that there is a peak in every 2D array!

Answer
Angle-Right Since any 2D array must contain at least one maximal element,
Angle-Right and a maximal element is no smaller than any other cell (including its four neighbors),
Angle-Right all maximal elements are peaks.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

14/21

Find Peak Algorithm

We aim to design a recursive algorithm FindPeakSp to find any peak.

Special-Peak Definition
Note: FindPeakSp finds a Special kind of peak element. This element is both a peak and
the maximal element in its column. We refer to this as a special-peak.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

15/21

Algorithm 3: FindPeakSp(𝐴)
1 if 𝐴 has 𝑛 = 1 column then
2 return a maximal element in the column
3 if 𝐴 has 𝑛 ≥ 2 columns then
4 Let 𝐶𝑚 be the middle column of 𝐴
5 Find a maximal element in 𝐶𝑚
6 if the above maximal element in 𝐶𝑚 is a peak then
7 return that element
8 else
9 𝑋 ← FindPeakSp(Left_Half_of_A_without_𝐶𝑚)

10 𝑌 ← FindPeakSp(Right_Half_of_A_without_𝐶𝑚)
11 if 𝑋 or 𝑌 is a peak then
12 return the peak (𝑋 or 𝑌)
13 else
14 return None // See Question Q3



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

16/21

Question 4 [P3]
What is the runtime complexity of the FindPeakSp(𝐴) algorithm?

Answer
Finding the maximal element in a column takes Θ(𝑚) (as there are 𝑚 rows). The total
complexity depends on how many columns are processed, scaled by Θ(𝑚).

Column Processing Complexity
Let 𝑇 (𝑛) represent the number of columns to be processed:

𝑇 (𝑚, 𝑛) = 2 ⋅ 𝑇 (𝑚, 𝑛/2) + 𝑘 ⋅ 𝑚 ⟹ 𝑇 (𝑛) = 2 ⋅ 𝑇 (𝑛
2

) + 1

Since 𝑎 = 2, 𝑏 = 2, 𝑑 = log2 2 = 1, and 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖) for some 0.5 = 𝜖 > 0, by Case 1
of the Master Theorem, then 𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛log2 2) = Θ(𝑛).

Overall Runtime

𝑇 (𝑛) × Θ(𝑚) = Θ(𝑛) × Θ(𝑚) = Θ(𝑛𝑚)



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

16/21

Question 4 [P3]
What is the runtime complexity of the FindPeakSp(𝐴) algorithm?

Answer
Finding the maximal element in a column takes Θ(𝑚) (as there are 𝑚 rows). The total
complexity depends on how many columns are processed, scaled by Θ(𝑚).

Column Processing Complexity
Let 𝑇 (𝑛) represent the number of columns to be processed:

𝑇 (𝑚, 𝑛) = 2 ⋅ 𝑇 (𝑚, 𝑛/2) + 𝑘 ⋅ 𝑚 ⟹ 𝑇 (𝑛) = 2 ⋅ 𝑇 (𝑛
2

) + 1

Since 𝑎 = 2, 𝑏 = 2, 𝑑 = log2 2 = 1, and 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖) for some 0.5 = 𝜖 > 0, by Case 1
of the Master Theorem, then 𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛log2 2) = Θ(𝑛).

Overall Runtime

𝑇 (𝑛) × Θ(𝑚) = Θ(𝑛) × Θ(𝑚) = Θ(𝑛𝑚)



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

17/21

Question 5 [G]

Argue why FindPeakSp(𝐴) will never return None (i.e., always returns a peak).
Additionally, discuss whether any steps within the ‘else’ condition in Step 8 can be
optimized (faster asymptotically).

Answer
The argument shows that Steps 9 and 10 can be skipped, optimizing our algorithm.

Never Return None ⟺ Special-Peak Exists
If Step 8 is reached, the maximal element 𝑊 in column 𝑘 is not a peak, then:

Angle-Right Only the right neighbor of 𝑊 is larger.
Angle-Right Only the left neighbor of 𝑊 is larger (symmetric).
Angle-Right Both the left and right neighbors of 𝑊 are larger (covered by cases above).

We focus on the case where 𝑊’s right neighbor 𝑋 (in column 𝑘 + 1) is larger. This
ensures a special-peak exists in columns > 𝑘.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

17/21

Question 5 [G]

Argue why FindPeakSp(𝐴) will never return None (i.e., always returns a peak).
Additionally, discuss whether any steps within the ‘else’ condition in Step 8 can be
optimized (faster asymptotically).

Answer
The argument shows that Steps 9 and 10 can be skipped, optimizing our algorithm.

Never Return None ⟺ Special-Peak Exists
If Step 8 is reached, the maximal element 𝑊 in column 𝑘 is not a peak, then:
Angle-Right Only the right neighbor of 𝑊 is larger.
Angle-Right Only the left neighbor of 𝑊 is larger (symmetric).
Angle-Right Both the left and right neighbors of 𝑊 are larger (covered by cases above).

We focus on the case where 𝑊’s right neighbor 𝑋 (in column 𝑘 + 1) is larger. This
ensures a special-peak exists in columns > 𝑘.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

18/21

1 ⋯ 𝑘 𝑘 + 1 ⋯ 𝑛

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ 𝑎 𝑏 𝑊 𝑋 𝑐 ⋯
⋯ 𝑑 𝑒 𝑓 𝑔 ℎ ⋯

⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ 𝑙 𝑜 𝑝 𝑞 𝑟 ⋯
⋯ 𝑠 𝑡 𝑌 𝑍 𝑢 ⋯

𝑚 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Figure 2: Illustration of the right neighbor
scenario – Subarray 𝐴′ = 𝐴[1..𝑚][𝑘 + 1..𝑛].

Right Neighbor of 𝑊 is Larger
Angle-Right Then, 𝑋 > 𝑊.

Special-Peak in 𝐴′

If special-peak in column:
Angle-Right > 𝑘 + 1: Its a special-peak of 𝐴.
Angle-Right 𝑘 + 1: Adjacent to column 𝑘:

Angle-Double-Right 𝑍 is the max in column 𝑘 + 1,
Angle-Double-Right So 𝑍 ≥ 𝑋: 𝑋 is right of 𝑊.
Angle-Double-Right 𝑍 is not smaller than its top,

bottom, or right neighbors in 𝐴′.
Angle-Double-Right We must check the left neighbor:

Show 𝑍 ≥ 𝑌 in column 𝑘:
Since 𝑋 > 𝑊 and 𝑍 ≥ 𝑋,
𝑍 ≥ 𝑋 > 𝑊 ≥ 𝑌.

Angle-Double-Right 𝑍 is a special-peak of 𝐴.
Thus, 𝑍 is a special-peak of 𝐴.



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

19/21

Steps to optimize
How does this translate to optimizing (improving) the else condition in Step 8?

Algorithm 4: FindPeakSp-Imp(𝐴)
1 if 𝐴 has 𝑛 = 1 column then
2 return a maximal element in the column
3 if 𝐴 has 𝑛 ≥ 2 columns then
4 Let 𝐶𝑚 be the middle column of 𝐴
5 Find a maximal element in 𝐶𝑚
6 if the above maximal element in 𝐶𝑚 is a peak then
7 return that element
8 else
9 if the right neighbor of the above maximal element in 𝐶𝑚 is larger then

10 return FindPeakSp-Imp(Right_Half_of_A_without_𝐶𝑚)
11 else
12 return FindPeakSp-Imp(Left_Half_of_A_without_𝐶𝑚)



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

19/21

Steps to optimize
How does this translate to optimizing (improving) the else condition in Step 8?
Algorithm 5: FindPeakSp-Imp(𝐴)

1 if 𝐴 has 𝑛 = 1 column then
2 return a maximal element in the column
3 if 𝐴 has 𝑛 ≥ 2 columns then
4 Let 𝐶𝑚 be the middle column of 𝐴
5 Find a maximal element in 𝐶𝑚
6 if the above maximal element in 𝐶𝑚 is a peak then
7 return that element
8 else
9 if the right neighbor of the above maximal element in 𝐶𝑚 is larger then

10 return FindPeakSp-Imp(Right_Half_of_A_without_𝐶𝑚)
11 else
12 return FindPeakSp-Imp(Left_Half_of_A_without_𝐶𝑚)



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

20/21

Asymptotic Behavior
Let 𝑇 (𝑛) be the number of columns processed, with the recurrence:

𝑇 (𝑛) = 𝑇 (𝑛/2) + 1.

Since 𝑎 = 1, 𝑏 = 2, 𝑑 = 0, and 𝑓(𝑛) ∈ Θ(𝑛𝑑), by Case 2 of the Master Theorem:

𝑇 (𝑛) ∈ Θ(log 𝑛).

Thus, the algorithm runs in:

𝑇 (𝑛) × Θ(𝑚) = Θ(log 𝑛) × Θ(𝑚) = Θ(𝑚 log 𝑛),

which is asymptotically faster.

Question 5 Optional [Snack]
Is this Θ(𝑚 log 𝑛) algorithm the best possible solution? We can achieve Θ(𝑛) - How?



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

20/21

Asymptotic Behavior
Let 𝑇 (𝑛) be the number of columns processed, with the recurrence:

𝑇 (𝑛) = 𝑇 (𝑛/2) + 1.

Since 𝑎 = 1, 𝑏 = 2, 𝑑 = 0, and 𝑓(𝑛) ∈ Θ(𝑛𝑑), by Case 2 of the Master Theorem:

𝑇 (𝑛) ∈ Θ(log 𝑛).

Thus, the algorithm runs in:

𝑇 (𝑛) × Θ(𝑚) = Θ(log 𝑛) × Θ(𝑚) = Θ(𝑚 log 𝑛),

which is asymptotically faster.

Question 5 Optional [Snack]
Is this Θ(𝑚 log 𝑛) algorithm the best possible solution?

We can achieve Θ(𝑛) - How?



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

20/21

Asymptotic Behavior
Let 𝑇 (𝑛) be the number of columns processed, with the recurrence:

𝑇 (𝑛) = 𝑇 (𝑛/2) + 1.

Since 𝑎 = 1, 𝑏 = 2, 𝑑 = 0, and 𝑓(𝑛) ∈ Θ(𝑛𝑑), by Case 2 of the Master Theorem:

𝑇 (𝑛) ∈ Θ(log 𝑛).

Thus, the algorithm runs in:

𝑇 (𝑛) × Θ(𝑚) = Θ(log 𝑛) × Θ(𝑚) = Θ(𝑚 log 𝑛),

which is asymptotically faster.

Question 5 Optional [Snack]
Is this Θ(𝑚 log 𝑛) algorithm the best possible solution? We can achieve Θ(𝑛) - How?



Co
rr

ec
tn

es
s

an
d

D
iv

id
e-

an
d-

co
nq

ue
r

—
CS

32
30

21/21

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

1 Implement Algorithm 3 in code, find_peak_sp to return a special peak.

2 Check that you get this output:

...
Test 6: Matrix
6 8* 7 7* 1
9* 3 1 7* 3
8 4 5* 3 2
Peak found at (0, 1) with value 8

https://github.com/eric-vader/nus-cs3230-practical

