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Eric Han
eric_han@nus.edu.sg

https://eric-han.com

Computer Science

T03 – Week 4

Assignment 1 and 2 review
CS3230 – Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com
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Admin

Assignment 1 scores with comments are published, can be found on Canvas.

Angle-Right Comments have been given
Angle-Right Any queries please approach me (after class or on telegram)

Will be marking Assignment 2 soon (by +1 week).

General comments
Angle-Right Some proof is too succinct.

Angle-Double-Right When in doubt, give at least a one line reasoning
Angle-Right Glad to see many use limits to proof, which makes some easy!
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Recap from T02
Practice, practice, practice…

Q1 Telescoping Series
Review and do more practice:
Angle-Right Khan Academy Telescoping
Angle-Right Libretext Telescoping

Q5 Substitution Method
Review and do more practice (search ‘big o substitution method worksheet’):
Angle-Right Brilliant Substitution Method
Angle-Right The University of Auckland
Angle-Right MIT PS1

Substitution Method can be very powerful: 𝑇 (𝑛) = 𝑇 (𝑛 −
√

𝑛) +
√

𝑛; Intuition:

Angle-Right
√

𝑛 is the minimum work needed to be done
Angle-Right Try out a few steps to see if any pattern emerges.
Angle-Right What can be substituted to get back the same thing?

https://www.khanacademy.org/math/integral-calculus/ic-series/ic-telescoping-series/v/telescoping-series
https://math.libretexts.org/Courses/Monroe_Community_College/MTH_211_Calculus_II/Chapter_9%3A_Sequences_and_Series/9.2%3A_Infinite_Series/9.2E%3A_Exercises_for_Infinite_Series
https://brilliant.org/wiki/the-substitution-method-for-solving-recurrences/
https://www.cs.auckland.ac.nz/courses/compsci220s1t/lectures/lecturenotes/GG-lectures/220exercises1.pdf
https://ocw.mit.edu/courses/6-046j-introduction-to-algorithms-sma-5503-fall-2005/1fa860afa3b3889551cecd686afdf8de_ps1sol.pdf
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Assignment 1 Q1a [P1]

Consider the following eight functions of 𝑛:

23𝑛, 32𝑛, 𝑛17, 𝑛17 − 𝑛16,

8log2 𝑛, log10 2(𝑛18), 𝑛!,
√

𝑛

Order the above functions on the basis of nondecreasing order from smallest to largest,
where 𝑓(𝑛) is considered smaller than 𝑔(𝑛) if 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) but 𝑔(𝑛) ∉ 𝑂(𝑓(𝑛)). If
𝑓(𝑛) ∈ Θ(𝑔(𝑛)), then either can come earlier in the order. Give proof/arguments on why
your order is correct.
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Answer

Simplified Functions and Their Growth

Function Growth Type

23𝑛 = 8𝑛 Exponential
32𝑛 = 9𝑛 Exponential
𝑛17 Polynomial
𝑛17 − 𝑛16 Polynomial, ∀𝑛 ≥ 2 ∶ 0.5𝑛17 ≤ 𝑛17 − 𝑛16 ≤ 𝑛17 ⟹ Θ(𝑛17)
8log2 𝑛 = 𝑛3 Polynomial
log10 2(𝑛18) = 𝑛18

log 10 Polynomial, ∀𝑛 ∶ 1
log 10𝑛18 ≤ 𝑛18

log 10 ≤ 1
log 10𝑛18 ⟹ Θ(𝑛18)

𝑛! Exponential√
𝑛 = 𝑛0.5 Polynomial
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Polynomial Growth

0 < 𝑖 < 𝑗 ⟹ (∀𝑛 ≥ 2) 𝑛𝑖 < 𝑛𝑗,
⟹ (∀𝑛 ≥ 2) 𝑛0.5 < 𝑛3 < 𝑛17 < 𝑛18.

Hence, we have the current ordering:
√

𝑛 ≤ 8log2 𝑛 ≤ (𝑛17 = 𝑛17 − 𝑛16) ≤ log10 2(𝑛18)
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Exponential Growth
(∀𝑛 ≥ 1) 8𝑛 < 9𝑛, and we have the ordering 8𝑛 < 9𝑛.

Comparing 9𝑛 vs 𝑛!
Let 𝑚 = 2 ⋅ 92, so

𝑚! = 1 ⋅ 2 ⋅ … ⋅ 𝑚

≥ (𝑚
2

+ 1) ⋅ (𝑚
2

+ 2) ⋅ … ⋅ 𝑚 (Keep largest
𝑚
2

terms)

≥ (92) ⋅ (92) ⋅ … ⋅ (92)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚/2=92 terms

(Each term is at least 92)

= (92)92

= 92⋅92 = 9𝑚. (Simplify)

Hence, (∀𝑛 ≥ 𝑚) 𝑛! ≥ 9𝑛; Putting it all together:

8𝑛 ≤ 9𝑛 ≤ 𝑛!
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Comparing Polynomial vs Exponential
Note that for
Angle-Right Large enough 𝑘 (ie. 1

2
1

36 −1
), ⟹ 1 + 1

𝑘 ≤ 21/36.
Angle-Right 𝑛 ≥ 35𝑘 ⟹ 35𝑘 − 1 ≤ 𝑛 ⟹ 35𝑘 + 𝑛 − 1 ≤ 2𝑛 ⟹ 35𝑘+𝑛−1

2 ≤ 𝑛.

𝑛18 =
⎡
⎢⎢
⎣

2
1

⋅ 3
2

⋅ … ⋅ 𝑘 + 1
𝑘⏟⏟⏟⏟⏟⏟⏟

First 𝑘 terms

⋅ 𝑘 + 2
𝑘 + 1

⋅ 𝑘 + 3
𝑘 + 2

⋅ … ⋅ 𝑛
𝑛 − 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Remaining 𝑛 − 𝑘 − 1 terms

⎤
⎥⎥
⎦

18

≤ [2𝑘 ⋅ 2(𝑛−𝑘−1)/36]18 (1 + 1
𝑘

≤ 21/36)

= [2(35𝑘+𝑛−1)/36]18 = 2(35𝑘+𝑛−1)/2 ≤ 2𝑛 (
35𝑘 + 𝑛 − 1

2
≤ 𝑛).

Therefore:
√

𝑛 ≤ 8log2 𝑛 ≤ (𝑛17 = 𝑛17 − 𝑛16) ≤ log10 2(𝑛18) ≤ 8𝑛 ≤ 9𝑛 ≤ 𝑛!
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Assignment 1 Q1b

Show that ∑𝑛
𝑖=1

1
𝑖 ∈ Θ(ln 𝑛).
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Answer
Note that:
Angle-Right ∫𝑏

𝑎
1
𝑥 𝑑𝑥 = ln(𝑥)∣

𝑏

𝑎
= ln(𝑏) − ln(𝑎) = ln ( 𝑏

𝑎)

Angle-Right For 𝑖 ≥ 11: 1
𝑖+1 ≤ ∫𝑖+1

𝑥=𝑖
1
𝑥 𝑑𝑥 ≤ 1

𝑖 ⟹ ∑𝑛
𝑖=2

1
𝑖 = ∑𝑛−1

𝑖=1
1

𝑖+1 ≤ ∫𝑛
𝑥=1

1
𝑥 𝑑𝑥

ln 𝑛 ≤ ln(𝑛 + 1) = ln(𝑛 + 1) − ln 1 = ∫
𝑛+1

𝑥=1

1
𝑥

𝑑𝑥

≤
𝑛

∑
𝑖=1

1
𝑖

(∫
𝑛+1

𝑚
𝑓(𝑥) 𝑑𝑥 ≤

𝑛
∑
𝑘=𝑚

𝑓(𝑘))

≤ 1 + ∫
𝑛

𝑥=1

𝑑𝑥
𝑥

= 1 + ln 𝑛 − ln 1 = 1 + ln 𝑛. (
𝑛

∑
𝑖=1

1
𝑖

≤ 1 + ∫
𝑛

𝑥=1

1
𝑥

𝑑𝑥)

Thus ∑𝑛
𝑖=1

1
𝑖 ∈ Θ(ln 𝑛) = Θ(log 𝑛).

1See Riemann Sum.

https://demonstrations.wolfram.com/RiemannSums/
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Assignment 1 Q2

Recall that the Fibonacci numbers are defined as follows: 𝐹0 = 0, 𝐹1 = 1, and for 𝑛 ≥ 2,
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2.

Prove that every non-negative integer 𝑚 can be expressed as a sum of a finite set of
Fibonacci numbers, no two of which are the same or consecutive. That is, every
non-negative integer 𝑚 can be written as 𝑚 = 𝐹𝑖1

+ 𝐹𝑖2
+ … + 𝐹𝑖𝑘

, where

a. 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘, and
b. for 1 ≤ 𝑗 < 𝑘, 𝑖𝑗 + 1 < 𝑖𝑗+1.
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Answer
We prove the claim by induction on 𝑚.
Base Case: 𝑚 = 0 and 𝑚 = 1 hold as 𝑚 = 𝐹0 and 𝑚 = 𝐹1.
Induction step: Assume for all 𝑚 with 0 ≤ 𝑚 < 𝑛, 𝑚 can be written as claimed.
Let 𝑟 be the largest 𝐹𝑟 ≤ 𝑛:
Angle-Right Case 𝐹𝑟 = 𝑛: done.
Angle-Right Case 𝐹𝑟 < 𝑛: Let 𝑛′ = 𝑛 − 𝐹𝑟

Angle-Double-Right Assume 𝑛′ ≥ 𝐹𝑟−1 ⟹ 𝑛 = 𝐹𝑟 + 𝑛′ ≥ 𝐹𝑟 + 𝐹𝑟−1 = 𝐹𝑟+1 ⟹ contradiction.
Angle-Double-Right So 𝑛′ < 𝐹𝑟−1.
Angle-Double-Right By induction 𝑛′ = 𝐹𝑖1

+ … + 𝐹𝑖𝑘
, where 𝑖1, … , 𝑖𝑘 satisfy (a) and (b).

Angle-Double-Right Notice largest term 𝐹𝑖𝑘
is 𝐹𝑖𝑘

≤ 𝑛′ < 𝐹𝑟−1 ⟹ 𝑖𝑘 < 𝑟 − 1.
Angle-Double-Right Now, 𝑛 = 𝐹𝑖1

+ … + 𝐹𝑖𝑘
+ 𝐹𝑖𝑘+1

, where 𝑖𝑘+1 = 𝑟.
Angle-Double-Right Since 𝑖𝑘 < 𝑟 − 1 ⟹ 𝑖𝑘 + 1 < 𝑖𝑘+1, done.

Thus, 𝑛 can be expressed as required.
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Assignment 1 Q3

Suppose that 𝑓(𝑛), 𝑔(𝑛) ∶ ℤ≥0 → ℤ≥0 are increasing functions such that 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)).
Must it be true that 2𝑓(𝑛) ∈ 𝑂(2𝑔(𝑛))?

Answer
No.
Angle-Right For example, suppose 𝑓(𝑛) = 2𝑛 and 𝑔(𝑛) = 𝑛.
Angle-Right Then 𝑓(𝑛) ≤ 2𝑔(𝑛) ∈ 𝑂(𝑔(𝑛)).
Angle-Right However, 2𝑓(𝑛) = 22𝑛 = 4𝑛 = 2𝑛 ⋅ 2𝑛:

Angle-Double-Right (∀𝑐, 𝑛0 > 0)(∀𝑛 > max(2 + 𝑐, 𝑛0)) 2𝑛 ⋅ 2𝑛 > 𝑐 ⋅ 2𝑛

Angle-Double-Right 22𝑛 ∉ 𝑂(2𝑛)
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Assignment 2 Q1 [P2]

Solve the following recurrence relations. Provide as tight a bound as possible. If you use
the master theorem, state the case that applies, along with a short reasoning why the case
applies. Otherwise, give a detailed proof (using any of the methods). Unless otherwise
specified, you can assume base cases, 𝑇 (𝑛) for 𝑛 ≤ some constant, to be Θ(1). For ease
of notation, floors/ceilings are omitted (as mentioned in class, asymptotically, they don’t
make much difference for the following questions). Thus, when using a term such as 6𝑛/7
below, assume it means ⌊6𝑛

7 ⌋.

a. 𝑇 (𝑛) = 6𝑇 (𝑛/3) + 𝑛2.
b. 𝑇 (𝑛) = 9𝑇 (𝑛/2) + 6𝑛3 + 4.
c. 𝑇 (𝑛) = 𝑇 (𝑛/7) + 𝑇 (6𝑛/7) + 5. (Assume 7 ≤ 𝑇 (𝑛) ≤ 100 for 𝑛 ≤ 7.)
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Answer 1a
Using the Master Theorem, Case 3:
Angle-Right 𝑎 = 6, 𝑏 = 3, 𝑓(𝑛) = 𝑛2

Angle-Right 𝑑 = log3 6 < 1.7 = 2 − 0.3 (thus, 𝜖 = 0.2), and 𝑓(𝑛) ∈ Ω (𝑛𝑑+𝜖).
Angle-Right Furthermore, the regularity condition is satisfied, as:

6𝑓(𝑛/3) = 6(𝑛/3)2 = 6𝑛2

9
≤ 6

9
𝑓(𝑛) ⟹ 𝑐 = 6

9
< 1

Thus, 𝑇 (𝑛) ∈ Θ(𝑛2).

Answer 1b
Using the Master Theorem, Case 1:
Angle-Right 𝑎 = 9, 𝑏 = 2, 𝑓(𝑛) = 6𝑛3 + 4
Angle-Right 𝑑 = log2 9 > 3.1 = 3 + 0.1 (thus, 𝜖 = 0.05), and 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖).

Thus, 𝑇 (𝑛) ∈ Θ(𝑛log2 9).



A
ss

ig
nm

en
t

1
an

d
2

re
vi

ew
—

Er
ic

H
an

16/22

Answer 1c

Upper bound
Guess that 𝑇 (𝑛) ≤ 105𝑛 − 5 for 𝑛 ≥ 1.
Base Cases for 1 ≤ 𝑛 ≤ 7:

𝑇 (𝑛) ≤ 100 ≤ 105𝑛 − 5 for 1 ≤ 𝑛 ≤ 7.

Induction Step for 𝑛 > 7:
Assume that the guess holds for 1 ≤ 𝑛 < 𝑚, and prove for 𝑛 = 𝑚.

𝑇 (𝑚) ≤ 𝑇 (⌊𝑚/7⌋)+𝑇 (⌊6𝑚/7⌋)+5 ≤ 105(𝑚/7)−5+105(6𝑚/7)−5+5 ≤ 105𝑚−5.

In fact, it would work for all 𝑇 (𝑛) ≤ 𝑎 ⋅ 𝑛 − 5.
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Lower bound
Guess that 𝑇 (𝑛) ≥ 𝑛.
Base Cases for 1 ≤ 𝑛 ≤ 7:

𝑇 (𝑛) ≥ 7 ≥ 𝑛 for 1 ≤ 𝑛 ≤ 7.

Induction Step for 𝑛 > 7:
Assume that the guess holds for 1 ≤ 𝑛 < 𝑚, and prove for 𝑛 = 𝑚.

𝑇 (𝑚) ≥ 𝑇 (⌊𝑚/7⌋) + 𝑇 (⌊6𝑚/7⌋) + 5 ≥ 𝑚/7 − 1 + 6𝑚/7 − 1 + 5 ≥ 𝑚 + 3 ≥ 𝑚.

Conclusion
From Upper and Lower bounds, it follows that 𝑇 (𝑛) ∈ Θ(𝑛).
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Assignment 2 Q2

Suppose that 𝑓(1) = 0 and 𝑓(𝑛) = 3𝑓(𝑛/3) + 𝑛 when 𝑛 is a power of 3. Show that
𝑓(𝑛) = 𝑛 log3 𝑛 when 𝑛 is a power of 3.
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Answer
Base Case:
For 𝑛 = 1 = 30,

𝑓(𝑛) = 0 = 30 ⋅ log3 30.

Induction Step:
Suppose the hypothesis holds for 𝑛 = 3𝑚.
Then, we show it for 𝑛 = 3𝑚+1.

𝑓(𝑛) = 3𝑓(𝑛/3) + 𝑛
= 3𝑓(3𝑚) + 𝑛
= 3 ⋅ 3𝑚 log3 3𝑚 + 3𝑚+1

= 3𝑚+1(𝑚 + 1)
= (3𝑚+1) log3(3𝑚+1).
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Assignment 2 Q3 [P3]

Recall that the greatest common divisor (GCD) of two non-negative integers 𝑚, 𝑛 is the
greatest positive integer 𝑝 such that 𝑝 divides both 𝑚 and 𝑛.

Algorithm 1: 𝐺𝐶𝐷(𝑚, 𝑛)
1 if 𝑚 = 0 then
2 return 𝑛
3 else
4 return 𝐺𝐶𝐷(𝑛 mod 𝑚, 𝑚);

Give as tight an upper bound as possible on the running time of the above algorithm in
terms of 𝑛, the larger of the two inputs. You may assume that computing “𝑛 mod 𝑚’’
takes constant time for this question.
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Answer

Key Observation
Angle-Right If 𝑚 ≤ 𝑛/2, then:

𝑛 mod 𝑚 < 𝑚 ≤ 𝑛/2.

Angle-Right If 𝑚 > 𝑛/2, then:
𝑛 mod 𝑚 ≤ 𝑛 − 𝑚 < 𝑛/2.

Thus, in both cases, after two iterations, the maximum of the two values (on which GCD is
taken) reduces by at least half.

Upper Bound
We can express the recurrence for the running time as:

𝑇 (𝑛) ≤ 𝑇 (⌊𝑛/2⌋) + 2𝑐,

where 𝑐 is the bound on the runtime of one iteration. Solving this recurrence gives:

𝑇 (𝑛) ∈ 𝑂(log 𝑛).
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Fibonacci Case’s Lower Bound
Consider 𝐺𝐶𝐷(𝐹𝑚, 𝐹𝑚+1), where 𝐹𝑖 is the 𝑖-th Fibonacci number:
Angle-Right In one iteration, the input numbers 𝐹𝑚, 𝐹𝑚+1 become 𝐹𝑚−1, 𝐹𝑚.
Angle-Right This requires Ω(𝑚) steps.

Additionally, since log 𝐹𝑚 ∈ Θ(𝑚) (recall 𝐹𝑚 ≥ 2𝑚/2 and 𝐹𝑚 ≤ 2𝑚2):
Angle-Right For 𝑛 = 𝐹𝑚, Euclid’s algorithm takes time:

𝑇 (𝑛) ∈ Ω(log 𝑛).

Conclusion
Thus, the running time of Euclid’s algorithm is upper bounded by 𝑇 (𝑛) ∈ 𝑂(log 𝑛).

2Or Golden Ratio.

https://proofwiki.org/wiki/Upper_and_Lower_Bound_of_Fibonacci_Number#google_vignette

