
Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

1/32

CS3230
eric_han@nus.edu.sg

https://eric-han.com

Computer Science

T02 – Week 3

Recurrences and Master Theorem
CS3230 – Design and Analysis of Algorithms

mailto:eric_han@nus.edu.sg
https://eric-han.com

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

2/32

Recap from T01

Based on the post-tutorial poll, here are some advice: Here are some links (easy reads) to
help you proof them for yourself. The useful part of these properties are to be applied.

Q1 Limits > Complexity
Read more and proof it both ways ⟺ !
Angle-Right freecodecamp

Q2 Complexity Properties
Understand, proof the basic properties for yourself, and some additional properties.
Angle-Right CLRS Pg. 61
Angle-Right Stack Overflow, additional properties
Angle-Right geeksforgeeks

https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/
https://math.stackexchange.com/questions/3756882/double-checking-correctness-of-big-o-formulas-found-online
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

3/32

Practical T01
Show me and take a snack!

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
n

101

104

107

1010

1013

1016

1019

f(n
) /

 lo
g

f2(n) = n!
f3(n) = 2n + n
f4(n) = n2.3 + 16n + log n

f6(n) = log(n2n)
f5(n) = log(n2)
f1(n) = log n

Figure 1: Functions compared graphically; Plotting/Practical also helps!

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

4/32

Abridged Admin

Repeated for the benefit of those joining us this week:

Angle-Right Policies: Tutorials & Assignment Policy: Plagiarism (no AI tools).

Angle-Right Tutorial Discussion: Learning is social and I hope that we are able to build
friendships in this class. Identified by [G].

Angle-Right Participation (10 marks): 5 marks for each of two presentations. Identified by
presenter 1,2,3 (may be part of qn/etc): [P1/2/3]. Help yourself to the snacks.

Angle-Right Telegram Group: Join for updates.

Angle-Right Consultations: Wed 10-11 AM.

Angle-Right Assignments: Good job on submission of A01, will be marking over the next few days.

Angle-Right Questions?: Use ChatGPT, Telegram Group / PM @Eric_Vader .

https://canvas.nus.edu.sg/courses/69960/pages/assessments?module_item_id=465714
https://docs.google.com/spreadsheets/d/1ZZT03d9L-BIhghf2gHuKw7-XcjVFSFoiJBuY7Dk3bFE/edit?usp=sharing
https://t.me/+N3flNLXndgs5MjVl
https://canvas.nus.edu.sg/courses/69960/pages/teaching-staff?module_item_id=467088

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

5/32

Lecture Review

Master Theorem: Asymptotic Bounds for 𝑇 (𝑛)
For recurrence 𝑇 (𝑛) = 𝑎 ⋅ 𝑇 (𝑛

𝑏) + 𝑓(𝑛) with 𝑓(𝑛) = 𝑐 ⋅ 𝑛𝑚 log𝑘 𝑛, the asymptotic
behavior is determined by comparing 𝑓(𝑛) to 𝑛𝑑, where 𝑑 = log𝑏 𝑎:

1 Case 1: 𝑓(𝑛) ∈ 𝑂(𝑛𝑑−𝜖) ⇒ 𝑇 (𝑛) ∈ Θ(𝑛𝑑)
Dominated by work at the leaves.

2 Case 2: 𝑓(𝑛) ∈ Θ(𝑛𝑑 log𝑘 𝑛) ⇒ 𝑇 (𝑛) ∈ Θ(𝑛𝑑 log𝑘+1 𝑛)
Balanced contributions at all levels.
(Extensions of this case will be covered.)

3 Case 3: 𝑓(𝑛) ∈ Ω(𝑛𝑑+𝜖) ⇒ 𝑇 (𝑛) ∈ Θ(𝑓(𝑛))
Dominated by work at the root.
(Requires a regularity condition: 𝑎 ⋅ 𝑓 (𝑥

𝑏) ≤ 𝑐 ⋅ 𝑓(𝑥) for some 𝑐 < 1.)

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

6/32

Alternative Methods for Solving Recurrences
When the recurrence does not fit the standard form, consider these approaches:

1 Telescoping:
Simplify by collapsing terms across recursive levels (works when applicable).

2 Substitution Method:
Guess and check by proposing a solution and verifying through induction.
(Requires good initial guess(es)).

3 Recursion Tree:
Visualize the recurrence as a tree, summing contributions across levels.
(Interactive tool: Visualgo).

https://visualgo.net/en/recursion

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

7/32

Survey Results

45%

36%

9%

9%

I like algorithms, want to learn more
Core module, bo bian...
I aspire to secure a highly skilled software engineering position
Needed to take some modules, so...

Figure 2: Why are you taking CS3230?

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

8/32

1 Nothing, really 2 3 4 5 complexity, P/NP

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

C
ou

nt

Figure 3: How much do you know about algorithms/analysis?

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

9/32

Want to achieve
1 4x Understand the lecture and assignments better
2 2x Improve problem solving + Being able to understand the main concept of algo and

how to tailor solutions to solve leetcode challenges.
3 Learn some cool interesting stuff and also make sure I understand what is being

taught in the course
4 delve deeper into a concept without it being redundant/inaccessible
5 Learn enough to get good enough score
6 have fun discussions

Suggestions
1 Go at a slow pace and fully utilise the class time
2 Post- class survey for questions not understood by majority so next class can go over

it briefly?

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

10/32

Question 1 [G]/[P1]

Give a tight asymptotic bound for 𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
4) + 𝑛

log 𝑛 using telescoping.

Question 1 Variant [G]
Use Master Theorem instead (See Master Theorem Wiki).

Recap
Angle-Right What is telescoping?
Angle-Right tight asymptotic bound = ⋯ ?

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)#Generic_form

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

11/32

Answer
For ease of notation, assume 𝑛 is a power of 4 (to avoid floors/ceilings). If 𝑛 is not a
power of 4, it would only make a constant factor difference.

Rearrange for telescoping

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
4

) + 𝑛
log 𝑛

(the original recurrence)

𝑇 (𝑛)
𝑛

=
4 ⋅ 𝑇 (𝑛

4)
𝑛

+ 1
log 𝑛

(divide both LHS and RHS by 𝑛)

𝑇 (𝑛)
𝑛

=
𝑇 (𝑛

4)
𝑛
4

+ 1
log 𝑛

(rearrange to bring 4 down to denominator)

1
log 𝑛

= 𝑇 (𝑛)
𝑛

−
𝑇 (𝑛

4)
𝑛
4

Note: It is possible to not divide by 𝑛, one would need to multiply the correct multiple to
each subsequent equation to cancel-out.

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

12/32

Telescope

1
log 𝑛

= 𝑇 (𝑛)
𝑛

−
𝑇 (𝑛

4)
𝑛
4

1
log 𝑛

4
=

𝑇 (𝑛
4)

𝑛
4

−
𝑇 (𝑛

16)
𝑛
16

(substitute 𝑛 with
𝑛
4

)

1
log 𝑛

16
=

𝑇 (𝑛
16)

𝑛
16

−
𝑇 (𝑛

64)
𝑛
64

(substitute 𝑛 with
𝑛
16

)

⋮
1

log 4
= 𝑇 (4)

4
− 𝑇 (1)

1
(final term, 𝑛 with 4)

Taking the sum on both LHS and RHS:

1
log 4

+ 1
log 16

+ ⋯ 1
log 𝑛

=
log4 𝑛

∑
𝑖=1

1
log 4𝑖 = 𝑇 (𝑛)

𝑛
− 𝑇 (1)

1

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

13/32

Manipulate

log4 𝑛

∑
𝑖=1

1
𝑖 log 4

= 𝑇 (𝑛)
𝑛

− 𝑇 (1) (simplify logarithms)

𝑇 (𝑛)
𝑛

− 𝑇 (1) ∈ Θ(log log 𝑛) (harmonic series over log 𝑛)

𝑇 (𝑛)
𝑛

∈ Θ(log log 𝑛) (𝑇 (1) is constant)

𝑇 (𝑛) ∈ Θ(𝑛 log log 𝑛). (multiply through by 𝑛)

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

14/32

See Master Theorem Case 2, extension 2b: When 𝑓(𝑛) = Θ (𝑛𝑑 log𝑘 𝑛) , 𝑘 = −1, then
𝑇 (𝑛) = Θ (𝑛𝑑 log log 𝑛) .

Answer (Master Theorem)

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
4

) + 𝑛
log 𝑛

Since 𝑎 = 4, 𝑏 = 4, 𝑑 = log4 4 = 1, and 𝑓(𝑛) = 𝑛
log 𝑛 = 𝑛1 log−1 𝑛 ∈ Θ(𝑛𝑑 log−1 𝑛).

Master Theorem Case 2b is applicable, and the result is:

𝑇 (𝑛) ∈ Θ(𝑛𝑑 log log 𝑛) = Θ(𝑛 log log 𝑛).

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)#Generic_form

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

15/32

Answer (Alt Telescope)

40 ⋅ 𝑛
log 𝑛

= 𝑇 (𝑛) − 4 ⋅ 𝑇 (𝑛
4

) (From the recurrence relation)

41 ⋅ 𝑛
log 𝑛

4
= 4 ⋅ 𝑇 (𝑛

4
) − 16 ⋅ 𝑇 (𝑛

16
) (𝑛 → 𝑛

4
, multiply by 4)

42 ⋅ 𝑛
log 𝑛

16
= 16 ⋅ 𝑇 (𝑛

16
) − 64 ⋅ 𝑇 (𝑛

64
) (𝑛 → 𝑛

16
, multiply by 42)

⋮

4𝑘 ⋅ 𝑛
log 4

= 4𝑘 ⋅ 𝑇 (4) − 4𝑘+1 ⋅ 𝑇 (1) (𝑛 → 4𝑘+1, multiply by 4𝑘)

Sometimes, by choosing to do this way without dividing would cause one to be stuck (but
sometimes it would work - try on the lecture example). In this question, going about the
dividing by 𝑛 method is the best way.

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

16/32

Question 2

Give a tight asymptotic bound for 𝑇 (𝑛) = 5 ⋅ 𝑇 (𝑛
3) + 𝑛.

1 𝑇 (𝑛) ∈ Θ(𝑛2)
2 𝑇 (𝑛) ∈ Θ(𝑛log5 3)
3 𝑇 (𝑛) ∈ Θ(𝑛log3 5)
4 𝑇 (𝑛) ∈ Θ(𝑛 log 𝑛)
5 𝑇 (𝑛) ∈ Θ(𝑛)

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

17/32

Answer

𝑇 (𝑛) = 5 ⋅ 𝑇 (𝑛
3

) + 𝑛

Since 𝑎 = 5, 𝑏 = 3, 𝑑 = log3 5 ≈ 1.46..., and 𝑓(𝑛) = 𝑛 = 𝑛1 ∈ 𝑂(𝑛𝑑−𝜖),
Master theorem case 1 is applicable, and the result is:

𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛log3 5) = Θ(𝑛1.46...).

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

18/32

Question 3 [P2]

Give a tight asymptotic bound for 𝑇 (𝑛) = 9 ⋅ 𝑇 (𝑛
3) + 𝑛3.

1 𝑇 (𝑛) ∈ Θ(𝑛9)
2 𝑇 (𝑛) ∈ Θ(𝑛3 log 𝑛)
3 𝑇 (𝑛) ∈ Θ(𝑛2)
4 𝑇 (𝑛) ∈ Θ(𝑛3)
5 𝑇 (𝑛) ∈ Θ(𝑛 log2 𝑛)

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

19/32

Answer

𝑇 (𝑛) = 9 ⋅ 𝑇 (𝑛
3

) + 𝑛3

Since 𝑎 = 9, 𝑏 = 3, 𝑑 = log3 9 = 2, and 𝑓(𝑛) = 𝑛3 ∈ Ω(𝑛𝑑+𝜖),
Master theorem case 3 is applicable, and the result is:

𝑇 (𝑛) ∈ Θ(𝑛3).

Regularity condition holds for 𝑐 = 1
3 < 1:

{𝑎 ⋅ 𝑓 (𝑥
𝑏

) = 9 ⋅ 𝑓 (𝑥
3

) = 9 ⋅ 𝑥3

33 = 𝑥3

3
} ≤ {1

3
⋅ 𝑓(𝑥) = 𝑐 ⋅ 𝑓(𝑥)}

Extra remarks:
If the given 𝑓(𝑛) is not of the form 𝑓(𝑛) = 𝑐 ⋅ 𝑛𝑑 log𝑘 𝑛, the regularity condition may not
hold, and it must be checked. In lecture 2, we saw that if the regularity condition holds, we
are in case 3.

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

20/32

Question 4

Give a tight asymptotic bound for 𝑇 (𝑛) = 16 ⋅ 𝑇 (𝑛
4) + 𝑛2 log 𝑛.

1 𝑇 (𝑛) ∈ Θ(𝑛2 log 𝑛)
2 𝑇 (𝑛) ∈ Θ(𝑛2 log2 𝑛)
3 𝑇 (𝑛) ∈ Θ(𝑛2)
4 𝑇 (𝑛) ∈ Θ(𝑛3)
5 𝑇 (𝑛) ∈ Θ(𝑛4 log 𝑛)

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

21/32

Answer

𝑇 (𝑛) = 16 ⋅ 𝑇 (𝑛
4

) + 𝑛2 log 𝑛

Since 𝑎 = 16, 𝑏 = 4, 𝑑 = log4 16 = 2, and 𝑓(𝑛) = 𝑛2 log 𝑛 ∈ Θ(𝑛𝑑 log1 𝑛),
Master theorem case 2 is applicable, and the result is:

𝑇 (𝑛) ∈ Θ(𝑛2 log1+1 𝑛) = Θ(𝑛2 log2 𝑛).

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

22/32

Question 5 [G]/[P3]

Give a tight asymptotic bound for 𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
2) +

√
𝑛 using the substitution

method.

Question 5 Variant [G]
Use Master Theorem instead.

Recap
Angle-Right What is substitution method?

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

23/32

Answer

Upper bound
We guess 𝑇 (𝑛) ≤ 𝑐2 ⋅ 𝑛2 − 𝑐1 ⋅ 𝑛 (a wrong guess will make the math “not work”).
For 𝑐1 = 1, we set 𝑐2 large enough so that 𝑇 (1) ≤ 𝑐2 − 𝑐1.

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
2

) +
√

𝑛

≤ 4 ⋅ (𝑐2 ⋅ 𝑛2

22 − 𝑐1 ⋅ 𝑛
2

) +
√

𝑛 (substitute the guessed solution)

= 𝑐2 ⋅ 𝑛2 − 2 ⋅ 𝑐1 ⋅ 𝑛 +
√

𝑛 (simplify)
≤ 𝑐2 ⋅ 𝑛2 − 𝑐1 ⋅ 𝑛 + (

√
𝑛 − 𝑐1 ⋅ 𝑛) (rearrange terms)

≤ 𝑐2 ⋅ 𝑛2 − 𝑐1 ⋅ 𝑛 (since
√

𝑛 − 𝑐1 ⋅ 𝑛 < 0 for 𝑛 > 1/𝑐2
1).

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

24/32

Lower bound
For the lower bound, we guess 𝑇 (𝑛) ≥ 𝑐3 ⋅ 𝑛2, where 𝑐3 is a positive constant.

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
2

) +
√

𝑛

≥ 4 ⋅ (𝑐3 ⋅ 𝑛2

22) +
√

𝑛 (substitute the guessed solution)

= 𝑐3 ⋅ 𝑛2 +
√

𝑛 (simplify)
≥ 𝑐3 ⋅ 𝑛2 (since

√
𝑛 adds extra positive cost).

Since 𝑐3 ⋅ 𝑛2 ≤ 𝑇 (𝑛) ≤ 𝑐2 ⋅ 𝑛2 − 𝑐1 ⋅ 𝑛, then:

𝑇 (𝑛) ∈ Θ(𝑛2).

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

25/32

Answer (Master Theorem)

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
2

) +
√

𝑛

Since 𝑎 = 4, 𝑏 = 2, 𝑑 = log2 4 = 2, and 𝑓(𝑛) =
√

𝑛 = 𝑛0.5 ∈ 𝑂(𝑛𝑑−𝜖),
Master Theorem case 1 is applicable, and the result is:

𝑇 (𝑛) ∈ Θ(𝑛𝑑) = Θ(𝑛2).

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

26/32

Answer (Direct)

𝑇 (𝑛) = 4 ⋅ 𝑇 (𝑛
2

) +
√

𝑛 (Given recurrence relation)

= 4 ⋅ [4 ⋅ 𝑇 (𝑛
4

) + √𝑛
2

] +
√

𝑛 (Expand 𝑇 (𝑛
2

))

= 42 ⋅ 𝑇 (𝑛
4

) + 4 ⋅ √𝑛
2

+
√

𝑛 (Simplify)

= 42 ⋅ [4 ⋅ 𝑇 (𝑛
8

) + √𝑛
4

] + 4 ⋅ √𝑛
2

+
√

𝑛 (Expand 𝑇 (𝑛
4

))

= 43 ⋅ 𝑇 (𝑛
8

) + 42 ⋅ √𝑛
4

+ 4 ⋅ √𝑛
2

+
√

𝑛 (Simplify)

⋮ (Repeat expansion)

= 4𝑘 ⋅ 𝑇 (𝑛
2𝑘) +

𝑘−1
∑
𝑖=0

4𝑖 ⋅ √ 𝑛
2𝑖 (Generalize after 𝑘 steps)

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

27/32

𝑇 (𝑛) = 4log2 𝑛 ⋅ 𝑇 (1) +
log2 𝑛−1

∑
𝑖=0

4𝑖 ⋅ √ 𝑛
2𝑖 (Substitute 𝑘 = log2 𝑛)

= 𝑛2 ⋅ 𝑇 (1) +
log2 𝑛−1

∑
𝑖=0

4𝑖 ⋅ √ 𝑛
2𝑖 (4log2 𝑛 = 𝑛2)

= 𝑛2 ⋅ 𝑇 (1) +
√

𝑛 ⋅
log2 𝑛−1

∑
𝑖=0

23𝑖/2 (Factorize
√

𝑛)

= 𝑛2 ⋅ 𝑇 (1) +
√

𝑛 ⋅ 1 − (23/2)log2 𝑛

1 − 23/2 (Geometric series)

= 𝑛2 ⋅ 𝑇 (1) +
√

𝑛 ⋅ 1 − 𝑛3/2

1 − 23/2 (𝑛3/2 = (23/2)log2 𝑛)

∈ Θ(𝑛2).

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

28/32

Question 6 [G]

Suppose that you are given 𝑘 sorted arrays: {𝐴1, 𝐴2, … , 𝐴𝑘}, with 𝑛 elements each.
Your task is to merge them into one combined sorted array of size 𝑘 ⋅ 𝑛.
Let 𝑇 (𝑘, 𝑛) denote the complexity of merging 𝑘 arrays of size 𝑛.
Suppose that you decide that the best way to do the above is via recursion (when 𝑘 > 1):

1 Merge the first ⌈𝑘
2 ⌉ arrays of size 𝑛.

2 Merge the remaining ⌊𝑘
2 ⌋ arrays of size 𝑛.

3 Merge the two sorted subarrays obtained from the first two steps above.

Give a formula for 𝑇 (𝑘, 𝑛) based on the recursive algorithm above and solve the recurrence.
You can assume that merging two arrays takes time proportional to the sum of the sizes of
the two arrays.

Recap
Angle-Right What is recursion tree?

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

29/32

Answer
The original problem with 𝑘 sorted arrays is divided into two sub-problems of size 𝑘

2 sorted
arrays each (rounded up or down if necessary). Finally, these two arrays, each of size 𝑘⋅𝑛

2 ,
are merged with a cost of:

𝑘 ⋅ 𝑛
2

+ 𝑘 ⋅ 𝑛
2

= 𝑐 ⋅ 𝑘 ⋅ 𝑛, (for some constant 𝑐).

Thus, the recurrence is:

𝑇 (𝑘, 𝑛) = 2 ⋅ 𝑇 (𝑘
2

, 𝑛) + 𝑐 ⋅ 𝑘 ⋅ 𝑛.

This recurrence does not directly fit into the Master Theorem. Instead, we use a recursion
tree to analyze the cost.

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

30/32

Recursion Tree Analysis

Base Case
When 𝑘 = 1, No merging is needed as there’s only one array.

Tree Height
The height of the recursion tree is log2 𝑘, as each recursive step divides the number of
arrays into halves until only one array remains.

Cost at Each Level 𝑖 (starting at level 0)
There are 2𝑖 subproblems, each with a cost of 𝑘𝑛

2𝑖 :

Cost at level 𝑖 = 2𝑖 ⋅ 𝑘 ⋅ 𝑛
2𝑖 = 𝑐 ⋅ 𝑘 ⋅ 𝑛.

The cost at each level is constant, 𝑐 ⋅ 𝑘 ⋅ 𝑛, for all levels of the recursion tree.

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

31/32

k · n

k·n
2

k·n
4

...

k·n
2i

k·n
2i

...

k·n
4

...
...

k·n
2

k·n
4

...
...

k·n
4

...
...

k·n
2i

k·n
2i

= c · k · n

...

c · k · n

c · k · n

c · k · n

Θ(kn log k)

Level 0

Level 1

Level 2

...

Level i = log k

+

+ ++

+ +· · ·

∑log k
i=0 2i · c·k·n

2i

+

+

+

=

+

=

=

⇓ ∑log k
i=0 c · k · n = c · k · n · (1 + log k)

=

+ +

= ⇔

· · ·

Figure 4: We can sum across all levels from 0 to log 𝑘, resulting in 1 + log 𝑘 levels.

Re
cu

rr
en

ce
s

an
d

M
as

te
r

T
he

or
em

—
CS

32
30

32/32

Practical [Optional]

Practical repo: To help you further your understanding, not compulsory; Work for Snack!

1 Implement Q6 in code, merge_k_sorted_arrays to return the merge the arrays,
and the number of operations.

2 Check that you get this output:

Merged array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Number of operations (count): 36
Number of operations (theory): 36.0

https://github.com/eric-vader/nus-cs3230-practical

