Eric Han

eric_han@nus.edu.sg https://eric-han.com

Computer Science

T10 - 14 Nov 2024

Week 13

CS2109s TG35,36

Content I

- 1 K-means algorithm
- 2 Hierarchical clustering
- 3 SVD
- 4 Wrapping up

Student Feedback on Teaching (SFT)

NUS Student Feedback https://blue.nus.edu.sg/blue/:

- > Don't Mix module/grading/project feedback feedback only for teaching.
- > Feedback is confidential to university and anonymous to us.
- > Feedback is optional but highly encouraged.
- Past student feedback improves teaching; see https://www.eric-han.com/teaching >>> ie. Telegram access. More interactivity.
- > Your feedback is important to me, and will be used to improve my teaching.
 - Good > Positive feedback > Encouragement
 - Teaching Awards (nominate)
 - Steer my career path
 - - Improvement
 - Better learning experience

Eric Han

Week 13

In case you want to go and review some of our bonus questions, Wenzhong from TG04/2324s1 (some differences) has completed them all! With permission from him, he have agreed to share his solutions with all of you:

https://github.com/LWZ19/CS2109s-2324s1-bonus

Section 1: K-means algorithm

K-means clustering

Algorithm 1: K-means clustering

- 1 for k = 1 to K do
- 2 $\mu_k \leftarrow random \ location$

3 while not converged do

$$\begin{array}{l} \textbf{4} \quad \left| \begin{array}{c} \textbf{for } i = 1 \ \textbf{\textit{to }} m \ \textbf{do} \\ \textbf{5} \quad \left| \begin{array}{c} c^{(i)} \leftarrow argmin_k || x^{(i)} - \mu_k ||^2 \\ \textbf{6} \quad \textbf{for } k = 1 \ \textbf{\textit{to }} K \ \textbf{do} \\ \textbf{7} \quad \left| \begin{array}{c} \mu_k \leftarrow \frac{1}{|\{x^{(i)}|c^{(i)}=k\}|} \sum_{x \in \{x^{(i)}|c^{(i)}=k\}} x \end{array} \right. \end{array} \right. \end{array}$$

1 What is the key idea between K-means?

Prove that the algorithm...

- always produces a partition with a lower loss (monotonically decreasing)
 always converges ¹.
- **m** [@] What is EM algorithm and does it relate to K-Means?

Fun Fact: K-Means is my first ML algorithm that I implemented.

- a. Always produces a partition with a lower or eq loss...
 - **a.** Fix assignment, find the mean points $(|a + b|^2 = |a|^2 + |b|^2 + 2 < a, b >)$
 - **b.** Fix mean point, find the new assignment. (By definition of L5)
- **D** Always converges... (pigeonhole principle + loss never increases)
 - **a.** There are k^N possible config to partition N data points into k clusters
 - **b.** So we are transiting from one config to the next.
 - c. The next config has lower or eq loss
 - d. There cannot be a cycle where the next is always lower.
 - e. So must converge in finite number of iterations.

Question 2

Although k-means always converges, it may get stuck at a bad local minimum. What are some ways to help?

Recap

Run the algorithm multiple times, what happens?

The issue is with the initalization:

- Choose the first centroid randomly then the next to be as far as possible from the first, etc...
- K-means++, first centroid randomly and choose the rest using some probability distribution.

Question 3

i	1	2	3	4	5	6
x	1	1	2	2	3	3
y	0	1	1	2	1	2

Table 1: 6 data points on a 2D-plane

Cluster the 6 points in table 1 into **two** clusters using the K-means algorithm. The two initial centroids are (0, 1) and (2.5, 2).

Iteration 1

Using first centroid = (0, 1) and second centroid = (2.5, 2), we get the table below.

Point	D^2 to first centroid	D^2 to second centroid	Assigned Cluster
1	2	6.25	1
2	1	3.25	1
3	4	1.25	2
4	5	0.25	2
5	9	1.25	2
6	10	0.25	2

Computing the new centroids:

> Centroid
$$1 = ((1, 0) + (1, 1)) / 2 = (1, 0.5)$$

> Centroid 2 = ((2, 1) + (2, 2) + (3, 1) + (3, 2)) / 4 = (2.5, 1.5)

Iteration 2

Using first centroid = (1, 0.5) and second centroid = (2.5, 1.5), we get the table below.

Point	D^2 to first centroid	D^2 to second centroid	Assigned Cluster
1	0.25	4.5	1
2	0.25	2.5	1
3	1.25	0.5	2
4	3.25	0.5	2
5	4.25	0.5	2
6	6.25	0.5	2

Computing the new centroids:

Centroid
$$1 = ((1, 0) + (1, 1)) / 2 = (1, 0.5)$$

Centroid
$$2 = ((2, 1) + (2, 2) + (3, 1) + (3, 2)) / 4 = (2.5, 1.5)$$

Since the centroids are the same as those from the previous iteration, the K-means algorithm has converged.

Question 4

Cluster the 6 points in table 1 into two clusters using the K-medoids algorithm. The initial medoids are point 1 and point 3.

Recap

I What is the key difference between K-means and K-medoids?

Iteration 1

Point	D^2 to first medoid	D^2 to second medoid	Assigned Cluster	
1	0	2	1	
2	1	1	2	
3	2	0	2	
4	5	1	2	
5	5	1	2	
6	8	2	2	

For point 2, the distance between itself to the first medoid is the same as the distance between itself to the second medoid.

- > For simplicity, we assign point 2 as a member of the second cluster.
- > The strategy chosen must be deterministic.

Computing the new medoid:

- Centroid 1 = (1, 0)
- > Centroid 2 = ((1, 1) + (2, 1) + (2, 2) + (3, 1) + (3, 2)) / 5 = (2.2, 1.4)

We need to find the closest points to each centroid.

- > For centroid 1, the closest point is point 1. Hence, we set point 1 as the new medoid.
- For centroid 2, the closest point is point 3. Hence, we set point 3 as the new medoid. Since the medoids are the same as the initial ones, the K-medoids algorithm has converged.

Section 2: Hierarchical clustering

Question

Given this dataset:

i	1	2	3	4	5
x_1	0	1	3	1	1
x_2	0	1	0	3	4

- **I** Complete the distance matrix (using square of Euclidean distance).
- Draw the dendrogram for the three linkage methods (Single, Complete and Centroid).Draw a line that partitions it into 2 clusters.

Recap

What is the algorithm to construct a hierarchical cluster?

Week 13 — Eric Han

Section 3: SVD

Using the tut10.ipynb, we study PCA:

- I The current choice of k = 9 does not produce a very nice output. What is a good value for k?
- **2** For the value of k you select in (a), what is the space saved by doing this compression?
- 3 What are the drawbacks of this form of compression?
- [@] How does JPEG work and relate to this technique?
- [0] Should we mean-center the data? How does the calculation change?
- **[0]** What happens when we use the largest k?

Recap

> What is PCA and how does it work?

Figure 2: k=286 gives us 99% of the variance

When using k = 286, the (512×1536) 2D-array is now represented by U_{reduce} (512×286) and Z (286×1536) . This demonstrates approximately 25.5% space saved.

$$\frac{(512 \times 286) + (286 \times 1536)}{512 \times 1536} = \frac{585728}{786432} = 0.745$$

If we wish to have more compression, we can choose a smaller k, but at the expense of image quality.

Answer 3

- Lossy Compression The image cannot be reconstructed exactly and permanently loses information - ie. 100% of variance.
- \blacktriangleright Using the full $U_{reduce}\xspace$, we actually use more space than the original.

Section 4: Wrapping up

Parting Advice

- > NUS: 2023 GES Employment Rates
- > AI Hype comes in cycles.
- > Do what interest you I picked AI/ML because I love it.

Recommended Next Modules (If you like AI?)

- > CS3263 Foundations of Artificial Intelligence
- CS3264 Foundations of Machine Learning
- CS5339 Theory and Algorithms for Machine Learning
- CS5340 Uncertainty Modelling in AI
- CS5446 AI Planning and Decision Making
- CS5242 Neural Networks and Deep Learning
- Project Modules (FYP/CP4106)
 - » Al driven Modern Web Crawling
 - » Numerical accuracy in Bayesian Optimization
 - >>> Visualising Machine Learning Algorithms
 - >> (Or propose your own)

Buddy Attendance Taking

- \blacksquare [@] and Bonus declaration is to be done here; You should show bonus to Eric.
- 2 Attempted tutorial should come with proof (sketches, workings etc...)
- Random checks may be conducted.
- Guest student should come and inform me.

Figure 3: Buddy Attendance: https://forms.gle/q5Secb3dHshmXNXd7

References I

Π