Eric Han

eric_han@nus.edu.sg https://eric-han.com

Computer Science

T07 - 24 Oct 2024

Week 10

CS2109s T17(relief), TG35, 36

Content I

- 1 Logic Gates
- 2 Single vs Multi Layer Perceptron
- 3 Forward Propagation
- 4 Non-linear Activation Functions
- 5 Working with Dimensions

Section 1: Logic Gates

ID	x_1	x_2	AND	OR	XOR		
0	0	0	0	0	0	x	NOT
1	0	1	0	1	1	0	1
2	1	0	0	1	1	1	0
3	1	1	1	1	0		

Determine a function that can be used to model the decision boundaries of the logical NOT, OR, and AND gates. What are the weights and bias?

- Is it possible to model the XOR function using a single Perceptron? [@] Proof.
- **13** Model XOR using a number of NOT, OR, and AND perceptrons.
- 4 If data samples are reordered, will the model converges to a different model?
- **5** Does your proposed models (AND, OR, NOT) have high bias and high variance?

Recap

What is a Perceptron and what is the Perceptron Update Rule?

Answer 1

Note that we let $w_0 = b$, so $y = X \cdot w^T + w_0$.

```
AND Gate - 4 iters, 11 updates
iter=0 idx=0 w=[-0.1 \ 0. \ 0.]
iter=0 idx=3 w=[0. 0.1 0.1]
iter=1 idx=0 w=[-0.1 0.1 0.1]
iter=1 idx=1 w=[-0.2 0.1 0.]
iter=1 idx=3 w=[-0.1 0.2 0.1]
iter=2 idx=1 w=[-0.2 0.2 0.]
iter=2 idx=2 w=[-0.3 0.1 0.]
iter=2 idx=3 w=[-0.2 0.2 0.1]
iter=3 idx=2 w=[-0.3 0.1 0.1]
iter=3 idx=3 w=[-0.2 0.2 0.2]
iter=4 idx=1 w=[-0.3 0.2 0.1]
```

OR Gate - 2 iters, 5 updates iter=0 idx=0 w=[-0.1 0. 0.] iter=0 idx=1 w=[0. 0. 0.1] iter=1 idx=0 w=[-0.1 0. 0.1] iter=1 idx=2 w=[0. 0.1 0.1] iter=2 idx=0 w=[-0.1 0.1 0.1]

NOT Gate - 1 iters, 2 updates iter=0 idx=1 w=[-0.1 -0.1] iter=1 idx=0 w=[0. -0.1]

Answer 2 XOR gate is not linearly separable. Proof:

П

Answer 2

XOR gate is not linearly separable. Proof:

- > Assume we have a line that can separate.
- > Assume that we have a point in the center.
- > The point is colinear and the 3 points cannot be linearly separable by both classes.

Answer 3

Figure 1: Layers are important to generalize better complex data.

Answer 4

Ordering	Iterations	No. of Updates	Weight	No. of Correct
[0, 1, 2, 3]	4	11	[-0.3 0.2 0.1]	4
[0, 2, 3, 1]	4	13	[-0.3 0.2 0.1]	4
[0, 2, 1, 3]	4	11	[-0.3 0.1 0.2]	4

- > Reordering can help model converge faster
- > Reordering can change the optimum point found potentially many local optima.

Answer 5

The proposed model has low bias and low variance; They all classify correctly.

Q4 Visualization

Effect of Data Ordering in Perceptron Update

Figure 2: Q4 Visualization

Section 2: Single vs Multi Layer Perceptron

Perceptron	MSE Train	MSE Validation
Single	1000	2000
Multi	800	1200

- **1** Why the difference in performance?
- 2 How to improve Single's performance? What are the advantages / disadvantages?
- **B** How to improve the performance of the multi-layer perceptron?

Recap

What does adding layers do?

Answer

I Complexity needed to classify dataset is likely non-linear boundary

- >> Single-layer: Less Complex, linear classifier
- >> Multi-layer: More Complex, non-linear classifier
- Feature Engineering, to 'transform' the space
 - >> Add polynomial terms
 - >> Add interaction terms
- Improve...?
 - >>> Performance: Increase complexity, add hidden layer
 - >> Reduce overfitting: Regularization

Section 3: Forward Propagation

Neural Network with 2D input, one hidden layer, with bias, using ReLU, MSE.

$$W^{[1]} = \begin{bmatrix} 0.1 & 0.1 \\ -0.1 & 0.2 \\ 0.3 & -0.4 \end{bmatrix}, W^{[2]} = \begin{bmatrix} 0.1 & 0.1 \\ 0.5 & -0.6 \\ 0.7 & -0.8 \end{bmatrix}, b = 1, X = [2, 3], y = [.1, .9]$$

Calculate the following values after the forward propagation: $\mathbf{a}^{[1]}$, $\mathbf{y}^{[2]}$ and $L(\mathbf{y}^{[2]}, \mathbf{y})$.

Recap

- > How to do forward pass?
 - >>> How to do it efficiently?
- > What is Loss/MSE?
- > What is ReLU?

Answer 1 Layer 1:

$$\mathbf{a}^{[1]^T} = ReLU\left(W^{[1]^T} \times X^T\right) = ReLU\left(\begin{bmatrix}0.1 & -0.1 & 0.3\\0.1 & 0.2 & -0.4\end{bmatrix} \times \begin{bmatrix}1\\2\\3\end{bmatrix}\right) = \begin{bmatrix}0.8\\0\end{bmatrix}$$

Layer 2:

$$\mathbf{y}^{[2]^{T}} = ReLU\left(W^{[2]^{T}} \times \mathbf{a}^{[1]^{T}}\right) = ReLU\left(\begin{bmatrix}0.1 & 0.5 & 0.7\\0.1 & -0.6 & -0.8\end{bmatrix} \times \begin{bmatrix}1\\0.8\\0\end{bmatrix}\right) = \begin{bmatrix}0.5\\0\end{bmatrix}$$
Loss:

$$L(\mathbf{y}^{[2]}, \mathbf{y}) = 0.5 ||\mathbf{y}^{[2]} - \mathbf{y}||_2 = 0.5 \times ((0.5 - 0.1)^2 + (0 - 0.9)^2) = 0.5 \times (0.16 + 0.81) = 0.485 \times (0.1$$

Section 4: Non-linear Activation Functions

Question 1 [G]

$$\hat{y} = g(\mathbf{W^{[L]}}^{\mathbf{T}} \dots g(\mathbf{W^{[2]}}^{\mathbf{T}} \cdot g(\mathbf{W^{[1]}}^{\mathbf{T}} x)))$$

where $\mathbf{W}^{[l] \in \{1, \cdots, L\}}$ is a weight matrix. You're given the following weight matrices:

$$\mathbf{W}^{[\mathbf{3}]} = \begin{bmatrix} 1.2 & -2.2\\ 1.2 & 1.3 \end{bmatrix}, \mathbf{W}^{[\mathbf{2}]} = \begin{bmatrix} 2.1 & -0.5\\ 0.7 & 1.9 \end{bmatrix}, \mathbf{W}^{[\mathbf{1}]} = \begin{bmatrix} 1.4 & 0.6\\ 0.8 & 0.6 \end{bmatrix}$$

You are given $g(z) = SiLU(z) = \frac{z}{1+e^{-z}}$ between all layers except the last layer.

- Is it possible to replace the whole neural network with just one matrix in both cases with and without non-linear activations g(z)?
- **D** What does this signify about the importance of the non-linear activation?

Answer 1a without non-linear activations:

$$M^{T} = \begin{bmatrix} 1.2 & -2.2 \\ 1.2 & 1.3 \end{bmatrix}^{T} \begin{bmatrix} 2.1 & -0.5 \\ 0.7 & 1.9 \end{bmatrix}^{T} \begin{bmatrix} 1.4 & 0.6 \\ 0.8 & 0.6 \end{bmatrix}^{T}$$
$$= \begin{bmatrix} 4.56 & 3.408 \\ -6.82 & -3.658 \end{bmatrix}$$

with non-linear activations: suppose $x_1 = [1,0]$ and $x_2 = [2,0]$:

$$\begin{split} [\hat{y_1}, \hat{y_2}] &= \begin{bmatrix} 1.2 & -2.2 \\ 1.2 & 1.3 \end{bmatrix}^T g \left(\begin{bmatrix} 2.1 & -0.5 \\ 0.7 & 1.9 \end{bmatrix}^T g \left(\begin{bmatrix} 1.4 & 0.6 \\ 0.8 & 0.6 \end{bmatrix}^T \begin{bmatrix} 1, 2 \\ 0, 0 \end{bmatrix} \right) \right) \\ &= \begin{bmatrix} 3.0571, 7.7257 \\ -5.2727, -13.2458 \end{bmatrix} \end{split}$$

Assume $\mathbf{M^{T}}$ exist:

Answer 1b

 $\hat{y} = \mathbf{W}^{[\mathbf{L}]\mathbf{T}} \dots \mathbf{W}^{[\mathbf{2}]\mathbf{T}} \mathbf{W}^{[\mathbf{1}]\mathbf{T}} x$

 $x = \mathbf{A}x, \quad \text{where } \mathbf{A} = \mathbf{W}^{[\mathbf{L}]\mathbf{T}} \dots \mathbf{W}^{[\mathbf{2}]\mathbf{T}} \mathbf{W}^{[\mathbf{1}]\mathbf{T}}$ by matrix multiplication

Without non-linear activations, the entire network collapses to a simple linear model; adding layers is futile.

> With non-linear activation functions let the network model non-linear relationships. The non-linear activation gives the Neural Network its representation power - without which the parameters in the network behave the same way.

Section 5: Working with Dimensions

Takes in grayscale images of size 32×32 and outputs 4 classes, with 3 layers, assuming batch size is 1.

- What are the dimensions of the input vector, the weight matrix, and the output vector of the three linear layers?
- > [@] How would this look like for a CNN? Compare with the setup here.

Recap

> How does one layer interact with the next?

Answer

layer	Input dim	Weight Matrix dim	Output dim
Linear layer 1	1024×1	1024×512	512×1
Linear layer 2	512×1	512×128	128×1
Linear layer 3	128×1	128×4	4×1

To help you further your understanding, not compulsory; Work for Snack/EXP!

Tasks

- Implement the missing code for FconLayer, NNetwork and M in the boilerplate code given to answer Qc1, Qd1
- 2 You must use Matrix operations where possible.
- 3 You must use reduce where possible. (Prompts in the code)
- 4 FconLayer should work properly with/without bias.

Buddy Attendance Taking

- \blacksquare [@] and Bonus declaration is to be done here; You should show bonus to Eric.
- 2 Attempted tutorial should come with proof (sketches, workings etc...)
- Random checks may be conducted.
- Guest student should come and inform me.

Figure 3: Buddy Attendance: https://forms.gle/q5Secb3dHshmXNXd7

References I