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Section 1: Visualising Regularisation
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Question [G]

Figure plots the loss (regularization / error) respectively; objective is to find the smallest.

Angle-Right L1: 𝐽(𝑤) = 1
2𝑚 [∑𝑚

𝑖=1(ℎ𝑤(𝑥(𝑖)) − 𝑦(𝑖))2 + 𝜆 ∑𝑛
𝑖=1 |𝑤𝑖|]

Angle-Right L2: 𝐽(𝑤) = 1
2𝑚 [∑𝑚

𝑖=1(ℎ𝑤(𝑥(𝑖)) − 𝑦(𝑖))2 + 𝜆 ∑𝑛
𝑖=1 𝑤𝑖

2]

Figure 1: LR with L1 Reg. Figure 2: LR with L2 Reg.
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1 For each of the following cases, provide an estimate of the optimal values of 𝑤0 and
𝑤1 using the figures as reference.

a. No regularisation.
b. L1 regularisation with 𝜆 = 5.
c. L2 regularisation with 𝜆 = 5.
d. [@] Why does L1 often cause values to go to zero?

2 How does L2 Regularisation differ from L1 Regularisation in terms of what they do to
the parameters?

Recap
Angle-Right How to read this graph?

Angle-Double-Right Versus 1D error graphs?
Angle-Right What is the difference between L1 and L2 reg.
Angle-Right Ridge vs Lasso
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Answer
1 Find the point (𝑤0, 𝑤1) with the smallest Cost

a. (0.9, 0.5), Cost: approx 0 (no MSE and no regularization penalty).
b. (0.0, 0.5), Cost: 4.7 = 2.2 (MSE) + 2.5 (L1 penalty).
c. (0.2, 0.25), Cost: 3.1 = 2.6 (MSE) + 0.5 (L2 penalty).

d. Why does L1 often cause values to go to zero?:
L1 has absolute values, which means it has a discontinuity at 0, which means that any
optimization that cross 0 to be zeroed out. Effectively feature selection.
L2 heavily penalizes larger parameters, prefering smaller values.

2 L2 Regularisation vs L1 Regularisation on parameters
Angle-Double-Right L2 penalizes larger parameters (Where did we see this prior?) MSE vs MAE
Angle-Double-Right L1 may just set certain parameters to zero, ie. feature selection.



W
ee

k
9

—
Er

ic
H

an

6/29

Answer
1 Find the point (𝑤0, 𝑤1) with the smallest Cost

a. (0.9, 0.5), Cost: approx 0 (no MSE and no regularization penalty).
b. (0.0, 0.5), Cost: 4.7 = 2.2 (MSE) + 2.5 (L1 penalty).
c. (0.2, 0.25), Cost: 3.1 = 2.6 (MSE) + 0.5 (L2 penalty).
d. Why does L1 often cause values to go to zero?:

L1 has absolute values, which means it has a discontinuity at 0, which means that any
optimization that cross 0 to be zeroed out. Effectively feature selection.
L2 heavily penalizes larger parameters, prefering smaller values.

2 L2 Regularisation vs L1 Regularisation on parameters
Angle-Double-Right L2 penalizes larger parameters (Where did we see this prior?)

MSE vs MAE
Angle-Double-Right L1 may just set certain parameters to zero, ie. feature selection.



W
ee

k
9

—
Er

ic
H

an

6/29

Answer
1 Find the point (𝑤0, 𝑤1) with the smallest Cost

a. (0.9, 0.5), Cost: approx 0 (no MSE and no regularization penalty).
b. (0.0, 0.5), Cost: 4.7 = 2.2 (MSE) + 2.5 (L1 penalty).
c. (0.2, 0.25), Cost: 3.1 = 2.6 (MSE) + 0.5 (L2 penalty).
d. Why does L1 often cause values to go to zero?:

L1 has absolute values, which means it has a discontinuity at 0, which means that any
optimization that cross 0 to be zeroed out. Effectively feature selection.
L2 heavily penalizes larger parameters, prefering smaller values.

2 L2 Regularisation vs L1 Regularisation on parameters
Angle-Double-Right L2 penalizes larger parameters (Where did we see this prior?) MSE vs MAE
Angle-Double-Right L1 may just set certain parameters to zero, ie. feature selection.



W
ee

k
9

—
Er

ic
H

an

7/29

Ridge vs Lasso

Figure 3: https://eric-han.com/teaching/AY2425S1/CS2109s/T06.week-9_regularization-and-
validation_ridge-lasso.gif

https://eric-han.com/teaching/AY2425S1/CS2109s/T06.week-9_regularization-and-validation_ridge-lasso.gif
https://eric-han.com/teaching/AY2425S1/CS2109s/T06.week-9_regularization-and-validation_ridge-lasso.gif
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Section 2: SVM and Hinge Loss
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Question 1 [G]
The red and blue points correspond to points with ̄𝑦 = −1 and ̄𝑦 = 1 respectively. The
decision boundary for a linear model on this data would be the function
ℎ(𝑥1, 𝑥2) = ∑5

𝑖=1 𝛼(𝑖) ̄𝑦(𝑖) (𝑥1𝑥(𝑖)
1 + 𝑥2𝑥(𝑖)

2 ) + 𝑏.

Figure 4: SVM example.

𝑖 𝑥(𝑖)
1 𝑥(𝑖)

2 ̄𝑦(𝑖)

1 -2 -2 -1
2 -2 0 -1
3 0 2 1
4 1 1 1
5 3 0 1
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a. The two lines (green and purple) represent decision boundaries of 2 different linear
models. How can we parametrize the lines, i.e. what are the values for
𝛼(1), 𝛼(2), 𝛼(3), 𝛼(4), 𝛼(5), 𝑏 for the 2 lines?

b. Calculate the total loss for the green line in in a similar manner. Also find the
parameter(s) that result in the least loss.

c. Which line is a better solution to the SVM?
d. [@] Solve max𝛼 ∑𝑛

𝑖=1 𝛼(𝑖) − 1
2 ∑𝑛

𝑖=1 ∑𝑛
𝑗=1 𝛼(𝑖)𝛼(𝑗) ̄𝑦(𝑖) ̄𝑦(𝑗) (x(𝑖) ⋅ x(𝑗)) using the

possible values of 𝛼(𝑖) found in part (a) for the green line. Using the equation
w = ∑𝑛

𝑖=1 𝛼(𝑖) ̄𝑦(𝑖)x(𝑖), what can you conclude about the value of w found in part (b)
and the one calculated here?

Recap
Angle-Right What is SVM, what is the intuition behind SVM?
Angle-Right What are support vectors vs non-support vectors?

Angle-Double-Right How to identify?
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Answer 1a - Green
From equation given, we change the form to SVM’s form (w ⋅ x + 𝑏 = 0)

𝑥2 = −𝑥1 ⟹ 𝑥1 + 𝑥2 = 0 ⟹ [1, 1]𝑇 ⋅ [𝑥1, 𝑥2] + 0 = 0

We know that w is constraint by margin 𝑀, where 2
|w| = 𝑀 (given), from geometry we

can calculate the margin by taking the distance between (0, 2) and (−2, 0).

𝑀 = √(−2 − 0)2 + (0 − 2)2 = 2
√

2 ⟹ |w| = 2
2
√

2
= 1√

2
We need to scale the equation [1, 1]𝑇 ⋅ x = 0 such that |w| = 1√

2 , we can scale by 𝑐 and
solve for 𝑐 (you can also scale to unit vector then scale it up):

[𝑐, 𝑐]𝑇 ⋅ x = 0 × 𝑐 ⟹ |[𝑐, 𝑐]| = √𝑐2 + 𝑐2 =
√

2𝑐 = 1√
2

⟹ 𝑐 = 1
2



W
ee

k
9

—
Er

ic
H

an

12/29

Hence, w = [1
2 , 1

2 ]𝑇 and 𝑏 = 0.

From graph, the -ve gutter will run through (−2, 0) and +ve gutter will run through
(0, 2), (1, 1), so they may be support vectors.

Hence, the (obviously) non-support: (−2, −2) and (3, 0), so 𝛼(1) = 𝛼(5) = 0.

So, using the constraint w = ∑𝑛
𝑖=1 𝛼(𝑖) ̄𝑦(𝑖)x(𝑖) (given):

w = [
1
2
1
2
] = −𝛼(2) [−2

0 ] + 𝛼(3) [0
2] + 𝛼(4) [1

1] ⟹ [2𝛼(2) + 𝛼(4)

2𝛼(3) + 𝛼(4)] = [
1
2
1
2
]

Then we also use the constraint ∑𝑛
𝑖=1 𝛼(𝑖) ̄𝑦(𝑖) = 0 (given):

−𝛼(2) + 𝛼(3) + 𝛼(4) = 0
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With the 3 equations, we can solve our linear equations:

⎡⎢
⎣

2 0 1
0 2 1

−1 1 1
⎤⎥
⎦

⎡
⎢
⎣

𝛼(2)

𝛼(3)

𝛼(4)

⎤
⎥
⎦

= ⎡⎢
⎣

1
2
1
2
0
⎤⎥
⎦

⟹ ⎡⎢
⎣

2 0 1 0.5
0 2 1 0.5

−1 1 1 0
⎤⎥
⎦

Hence, solving it gives 𝛼(2) = 𝛼(3) = 1
4 and 𝛼(1) = 𝛼(4) = 𝛼(5) = 0.

From constraint 𝛼(2) ≥ 0, 𝛼(3) ≥ 0, 𝛼(4) ≥ 0 (given), we see that the solution is valid.

Therefore, assuming hard margin SVM, the green line is a valid solution.
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Answer 1a - Purple

w𝑇 ⋅ [𝑥1, 𝑥2] + 𝑏 = 0 ⟹ w = [𝑐, 0]𝑇, 𝑏 = 𝑐, 𝑐 ∈ ℝ, 2
|w|

= 2 ⟹ w = [1, 0]𝑇

Identify the (obviously) non-support: (1, 1) and (3, 0), so 𝛼(4) = 𝛼(5) = 0,
So, using the w = ∑𝑛

𝑖=1 𝛼(𝑖) ̄𝑦(𝑖)x(𝑖), ∑𝑛
𝑖=1 𝛼(𝑖) ̄𝑦(𝑖) = 0 (in lectures) and constraints:

w = [1
0] = −𝛼(1) [−2

−2] − 𝛼(2) [−2
0 ] + 𝛼(3) [0

2] ⟹ [𝛼(1) + 𝛼(2)

𝛼(1) + 𝛼(3)] = [
1
2
0]

−𝛼(1) − 𝛼(2) + 𝛼(3) = 0
𝛼(1) ≥ 0, 𝛼(2) ≥ 0, 𝛼(3) ≥ 0

Hence, 𝛼(3) = 1/2, 𝛼(1) = −1/2, 𝛼(2) = 1 ⟹ Contradiction 𝛼(1) ≥ 0
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Answer 1b
Assuming w = (𝑘, 𝑘) and 𝑏 = 0. Hinge loss is:

max(0, 1 − 4𝑘) + max(0, 1 − 2𝑘) + max(0, 1 − 2𝑘) + max(0, 1 − 2𝑘) + max(0, 1 − 3𝑘)
= 3 ⋅ max(0, 1 − 2𝑘) + max(0, 1 − 3𝑘) + max(0, 1 − 4𝑘)

and total loss is 3 ⋅ max(0, 1 − 2𝑘) + max(0, 1 − 3𝑘) + max(0, 1 − 4𝑘) + 𝑘2. Minimized
at 0.25 when 𝑘 = 0.5.
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Answer 1c
By observation: Green is better.
Intuition: Both lines completely separate without mislabels, Green has max margin:
Angle-Right Green: 2 ×

√
2

Angle-Right Purple: 2 × 1 (And not a converged SVM line)

Note
Angle-Right Margin can be calculated by geometry
Angle-Right Or by 2

|𝑤|
Angle-Right Do not use loss argument here
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Answer 1d
From (1a), it is possible to partially solve, such that 𝛼(2) = 𝛼(3) = 𝑘 (instead of solving for
𝑘 = 1/4) and that 𝛼(1) = 𝛼(4) = 𝛼(5) = 0:

max
𝛼

𝑛
∑
𝑖=1

𝛼(𝑖) − 1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝛼(𝑖)𝛼(𝑗) ̄𝑦(𝑖) ̄𝑦(𝑗) (x(𝑖) ⋅ x(𝑗))

= max
𝛼

𝛼(2) + 𝛼(3) − 1
2

[𝛼(2)𝛼(2) ̄𝑦(2) ̄𝑦(2) (x(2) ⋅ x(2)) + 𝛼(2)𝛼(3) ̄𝑦(2) ̄𝑦(3) (x(2) ⋅ x(3))

+ 𝛼(3)𝛼(2) ̄𝑦(3) ̄𝑦(2) (x(3) ⋅ x(2)) + 𝛼(3)𝛼(3) ̄𝑦(3) ̄𝑦(3) (x(3) ⋅ x(3))]

= max
𝑘

𝑘 + 𝑘 − 1
2

[(𝑘)(𝑘)(−1)(−1) [−2
0 ] ⋅ [−2

0 ] + (𝑘)(𝑘)(−1)(1) [−2
0 ] ⋅ [0

2]

+ (𝑘)(𝑘)(1)(−1) [0
2] ⋅ [−2

0 ] + (𝑘)(𝑘)(1)(1) [0
2] ⋅ [0

2]]

= max
𝑘

2𝑘 − 1
2

[4𝑘2 + 0 + 0 + 4𝑘2]

= max
𝑘

2𝑘 − 4𝑘2
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Differentiating and setting to 0, we get 𝑘 = 1
4 .

w =
𝑛

∑
𝑖=1

𝛼(𝑖) ̄𝑦(𝑖)x(𝑖)

= 1
4

(−1) [−2
0 ] + 1

4
(1) [0

2]

= [0.5
0.5]

Hinge loss was used as part of the derivation, not suprising to reach same answer as 2a.
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Section 3: Bias & Variance
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Question [G]

Two model hypotheses:

1 𝐻𝑤(𝑥) = 𝑤0 + 𝑤1𝑥
2 𝐻𝑤(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + ⋯ + 𝑤10𝑥10

With the 2 training/test error learning curves:

Figure 5: Model A. Figure 6: Model B.
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a. Which graph indicates model with a higher bias?
Angle-Double-Right How does bias seem to vary with the number of samples?

b. Which graph indicates model with a higher variance?
Angle-Double-Right How does variance seem to vary with the number of samples?

c. Which hypotheses (1,2) belong to the model (A,B)? Why?
d. [@] How might regularization affect the graphs for each of them?

Recap
Angle-Right What is bias?
Angle-Right What is variance?
Angle-Right What is the relation with model complexity?
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Figure 7: Bias-Variance Intuition.
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Answer
a. Model A. Relatively higher error, even as samples increase, indicates inability to

capture the true relationship sufficiently, hinting high bias. Bias does not (generally)
improve with increase in number of samples.

b. Model B. Lower error, but initially higher difference between the 2 error indicates high
variance. Getting more data points is likely to help variance.

c. Model A (high bias) is the linear model, because: linear model can’t capture quadratic
relationship, has high bias. Model B (high var) is the high degree polynomial, because:
overfits the points so initially high difference in errors. As number of samples
increases, the “degree of overfitting” reduces approaching a roughly quadratic curve.

d. Regularizaion would greatly benefit the more complex model by combating overfitting
ie. for L1 feature selection of the polynomial terms for model 2.
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Section 4: Gaussian Kernel
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Question

Proof that the Gaussian Kernel has Infinite Dimensional Features

a. [@] How does it relate to RBF? How can we invent new kernels with this property?

Recap
Angle-Right Kernels have special powers (from previous tutorials)
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Answer
We simply to 𝐾(𝑥, 𝑥′) = exp(−(𝑥 − 𝑥′)2), then use Taylor series of 𝑒𝑥, at 𝑥 = 0.

exp(−(𝑥 − 𝑥′)2) = exp(−𝑥2) × exp(−𝑥′2) × exp(2𝑥𝑥′)

= exp(−𝑥2) exp(−𝑥′2)[1 + 2𝑥𝑥′ + 22𝑥′2𝑥2

2!
+ ⋯ ]

= exp(−𝑥2) exp(−𝑥′2)
∞

∑
𝑘=0

2𝑘𝑥′𝑘𝑥𝑘

𝑘!

=
∞

∑
𝑘=0

[√2𝑘

𝑘!
exp(−𝑥2)𝑥𝑘 × √2𝑘

𝑘!
exp(−𝑥′2)𝑥′𝑘]

Angle-Right Formed by taking an infinite sum (dot product) over polynomial kernels
Angle-Right Map the current vector into an infinite dim. space and compute the distance.
Angle-Right Though this is an infinite dimensional space, each variable is highly constrained, so the

solution space is not exactly totally unbounded.
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Bonus Qn

To help you further your understanding, not compulsory; Work for Snack/EXP!

Tasks
1 Implement SVM from scratch (numpy) to solve green line, no boilerplate code given.

Angle-Double-Right Hint: Search for tutorial
Angle-Double-Right Don’t need to implement Optimizers, just use optimizers within numpy/scipy.
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Buddy Attendance Taking
1 [@] and Bonus declaration is to be done here; You should show bonus to Eric.
2 Attempted tutorial should come with proof (sketches, workings etc…)
3 Random checks may be conducted.
4 Guest student should come and inform me.

Figure 8: Buddy Attendance: https://forms.gle/q5Secb3dHshmXNXd7

https://forms.gle/q5Secb3dHshmXNXd7
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