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Annoucements

Important admin

• Tutorials left:
• Tutorial 9: 11 Apr 2024
• Tutorial 10: 18 Apr 2024

• Feel free to approach me to chat about research/module etc
• Lunch / Coffee in school
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Problem Set 5

• Q9 - Logistic regression using stochastic gradient descent
• For iteration, update a randomly selected datapoint.

• Q11 - Stochastic gradient descent vs batch gradient descent
• SGD faster BGD slower for every iteration
• SGD usually reaches the same loss faster
• SGD varies more due (better/worse) to the random updates (depending on point)

• Q16 - Linear SVM vs Gaussian Kernel SVM
• Linear Separability / Model Complexity
• Data Sparsity: More features » data points
• Compute complexity is tricky - Time Taken for Linear is actually longer due to

non-linear separability
• Performance is also tricky - More data added, Gaussian performs worse (overfitting)

3



Student Feedback on Teaching (SFT)

NUS Student Feedback https://blue.nus.edu.sg/blue/, due 26 Apr:

• Don’t Mix module/grading/project feedback - feedback only for teaching.
• Feedback is confidential to university and anonymous to us.
• Feedback is optional but highly encouraged.
• Past student feedback improves teaching; see https://www.eric-han.com/teaching

• ie. Telegram access, More interactivity.
• Your feedback is important to me, and will be used to improve my teaching.

• Good > Positive feedback > Encouragement
• Teaching Awards (nominate)
• Steer my career path

• Bad > Negative feedback (nicely pls) > Learning
• Improvement
• Better learning experience
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Student Feedback on Teaching (SFT)

Your feedback is important to me; optional, but highly encouraged:

Figure 1: NUS Student Feedback on Teaching - https://blue.nus.edu.sg/blue/
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Question 1

f [1] = W [1]T X , Ŷ = g [1](f [1]), E = −1
n

n−1∑
i=0

{
[Y0i ·log(Ŷ0i)]+[(1−Y0i)log(1−Ŷ0i)]

}

Figure 2: Simple Neural Network
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Question 1a [G]

When n = 1:

i. ∂E
∂Ŷ =

[
− Y00

Ŷ00
+ 1−Y00

1−Ŷ00

]
(Given)

ii. ∂E
∂f [1] = Ŷ − Y

iii. ∂E
∂W [1]

20
=

(
∂E

∂f [1]

)
00

X20

Recap

• What is back propagation?
• How to perform forward propagation?
• How to perform back propagation?
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Answer ii

Since n = 1, ∂E
∂f [1] = ∂E

∂f [1]
00

= ∂E
∂Ŷ00

∂Ŷ00
∂f [1]

00
(chain rule)

Since Ŷ00 = σ(f [1]
00 ) =⇒ ∂Ŷ00

∂f [1]
00

= σ(f [1]
00 )

(
1 − σ(f [1]

00 )
)

= Ŷ00(1 − Ŷ00)

From (i), ∂E
∂Ŷ00

=
[

− Y00
Ŷ00

+ 1−Y00
1−Ŷ00

]
∂E

∂f [1] =
[ ∂E
∂Ŷ00

∂Ŷ00

∂f [1]
00

]
=

[
− Y00

Ŷ00
+ 1 − Y00

1 − Ŷ00

][
Ŷ00(1 − Ŷ00)

]
=

[
− Y00(1 − Ŷ00) + (1 − Y00)Ŷ00

]
=

[
Ŷ00 − Y00

]
= Ŷ − Y .
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Answer iii

Since n = 1, ∂E
∂W [1]

20
= ∂E

∂f [1]
00

∂f [1]
00

∂W [1]
20

(chain rule)

f [1]
00 = W [1]T X =

∑2
i=0(W [1]T )0iXi0 =

∑2
i=0 W [1]

i0 Xi0 =⇒ ∂f [1]
00

∂W [1]
20

= X20

∂E
∂W [1]

20
= ∂E

∂f [1]
00

∂f [1]
00

∂W [1]
20

= ∂E
∂f [1]

00
X20

=
(

∂E
∂f [1]

)
00

X20

Note: ∂E
∂Ŷ , and ∂E

∂f [1] are matrices since E is a scalar, but Ŷ and f [1] are matrices.
However, ∂E

∂W [1]
20

is a scalar since W [1]
20 is a scalar.
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Question 1b-e [G]

b. Derive an expression for ∂E
∂W [1] , how does back propagation work?

c. Let us consider a general case where n ∈ N, find ∂E
∂f [1] .

d. Why do the hyper-parameters α and β? How to set their values?

E = −1
n

n−1∑
i=0

{
α[Y0i · log(Ŷ0i)] + β[(1 − Y0i) · log(1 − Ŷ0i)]

}
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Answer 1b

From (a), ∂E
∂W [1]

i0
=

(
∂E

∂f [1]

)
00

Xi0

∂E
∂W [1] =

[
∂E

∂W [1]
00

,
∂E

∂W [1]
10

,
∂E

∂W [1]
20

]T

=
(

∂E
∂f [1]

)
00

[
X00, X10, X20

]T =
(

∂E
∂f [1]

)
00

X

=
(

Ŷ − Y
)

X =
(

g [1](f [1]) − Y
)

X =
(

g [1](W [1]T X ) − Y
)

X

Intuition behind back propagation W [1] = W [1] − α ∂E
∂W [1] :

• Change in first layer weighted sum f [1]

• Change in predicted value Ŷ
• Change of loss E
• Decrease the loss by changing the weights
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Answer 1c

From (a), ∂E
∂f [1]

0i
=

[
∂E

∂Ŷ0i

∂Ŷ0i
∂f [1]

0i

]
∂E
∂Ŷ

=
[

∂E
∂Ŷ00

,
∂E

∂Ŷ01
, · · · ,

∂E
∂Ŷ0n

]
=

[
· · · ,

1
n

(
− Y0i

Ŷ0i
+ 1 − Y0i

1 − Ŷ0i

)
, · · ·

]

∂Ŷ0i

∂f [1]
0i

= σ(f [1]
0i )

(
1 − σ(f [1]

0i )
)

= Ŷ0i(1 − Ŷ0i)

∂E
∂f [1] =

[
∂E

∂f [1]
00

,
∂E

∂f [1]
01

, · · · ,
∂E

∂f [1]
0n

]

= 1
n

[
(Ŷ00 − Y00), (Ŷ01 − Y01), . . . , (Ŷ0n − Y0n)

]
= 1

n (Ŷ − Y ) 12



Answer 1d

Weighted Error:

E = −1
n

n−1∑
i=0

{
α[Y0i · log(Ŷ0i)] + β[(1 − Y0i) · log(1 − Ŷ0i)]

}
Apply a weight to how much each class contributes to the loss function:

• Error due to Cultiva A (pA = 100/1100): Y0i · log(Ŷ0i)
• Error due to Cultiva B (pB = 1000/1100): (1 − Y0i) · log(1 − Ŷ0i)

Since we have unbalanced dataset, we can weight using the ratio α
β = 1/100

1/1000 :

• α = 1/100
• β = 1/1000

We punish the model more heavily if it misclassifies A, so the model won’t be biased
towards predicting all samples as B. 13



Question 2 [G]

When n = 1, compute ∂E
∂W [1]

11
, where

f [1] = W [1]T X , a[1] = g [1](f [1]), f [2] = W [2]T a[1], Ŷ = g [2](f [2]), g [1](s) =
ReLU(s), g [2](s) = σ(s) = 1

1+e−s , W [1] ∈ R3×2, W [2] ∈ R2×1.

Figure 3: Complex NN

[@] Is ReLU continous/discontinuous, not/differentiable; Can we use discontinuous
activation functions? 14



Answer

Intuition: Plot the forward path and take the derivative.

W [1]
11

f [1]=W [1]T X−−−−−−−−→ f [1]
10

a[1]=g [1](f [1])−−−−−−−−→ a[1]
10

f [2]=W [2]T a[1]
−−−−−−−−→ f [2]

00
Ŷ =g [2](f [2])−−−−−−−→ Ŷ00 −→ E

f [1] =


W [1]

00 W [1]
01

W [1]
10 W [1]

11
W [1]

20 W [1]
21


T 

X00

X10

X20

 =
[ ∑

i W [1]
i0 Xi0∑

i W [1]
i1 Xi0

]

f [2] =
[
W [2]

00
W [2]

10

]T [
a[1]

00
a[1]

10

]
=

[∑
i W [2]

i0 a[1]
i0

]

Expand using chain rule: ∂E
∂W [1]

11
= ∂E

∂Ŷ00

∂Ŷ00
∂f [2]

00

∂f [2]
00

∂a[1]
10

∂a[1]
10

∂f [1]
10

∂f [1]
10

∂W [1]
11 15



Find each of the terms in ∂E
∂W [1]

11
= ∂E

∂Ŷ00

∂Ŷ00
∂f [2]

00

∂f [2]
00

∂a[1]
10

∂a[1]
10

∂f [1]
10

∂f [1]
10

∂W [1]
11

:

• ∂E
∂Ŷ00

= −αY00
Ŷ00

+ β(1−Y00)
1−Ŷ00

• ∂Ŷ00
∂f [2]

00
= σ(f [2]

00 )
(
1 − σ(f [2]

00 )
)

• ∂f [2]
00

∂a[1]
10

= W [2]
10

• ∂a[1]
10

∂f [1]
10

=

0, if f [1]
10 ≤ 0

1, otherwise
= 1f [1]

10 >0

• ∂f [1]
10

∂W [1]
11

= X10

where 1f [1]
10 >0 is an indicator function. Therefore,

∂E
∂W [1]

11
=

[
− αY00

Ŷ00
+ β(1 − Y00)

1 − Ŷ00

]
σ(f [2]

00 )
(
1 − σ(f [2]

00 )
)
W [2]

10 1f [1]
10 >0X10
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Question 3 [G]
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10 40
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Figure 4: Layers / Max Abs Gradient, using sigmoid

a. Gradient magnitudes of the first few layers are extremely small, what’s the problem?
b. Based on what we have learnt thus far, how can we mitigate this problem?

• [@] Other sophisticated ways to resolve the issue, and why does it work?
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Answer 3a

Figure 5: Sigmoid Function

a. The eariler the weight, more terms needed to compute its update.
• we need to take product of many, many derivatives
• derivatives of sigmoid is in (0, 1/4]
• ending up with a really small number
• causing convergence to be slow.
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Answer 3b

Use ReLU.
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10 21
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Figure 6: Layers / Max Abs Gradient, using ReLU
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Bonus Qn

Investigate for exploding gradient as per question 3, use the code given for tutorial as a
starting point.

Tasks

1. Implement a neural network that exhibits exploding gradient.
2. Plot the magnitudes for all layers like done in Question 3.
3. Analyse ways to mitigate the issue.
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Buddy Attendance Taking

1. [@] and Bonus declaration is to be done here; You should show bonus to Eric.
2. Attempted tutorial should come with proof (sketches, workings etc. . . )
3. Guest students must inform Eric and also register the attendance.

Figure 7: Buddy Attendance: https://forms.gle/jsGfFyfo9PTgWxib6 21

https://forms.gle/jsGfFyfo9PTgWxib6

