CS2109s - Tutorial 8

Eric Han (TG12-TG15) Apr 4, 2024

Important admin

- Tutorials left:
 - Tutorial 9: 11 Apr 2024
 - Tutorial 10: 18 Apr 2024
- Feel free to approach me to chat about research/module etc
 - Lunch / Coffee in school

Problem Set 5

- Q9 Logistic regression using stochastic gradient descent
 - For iteration, update a randomly selected datapoint.
- Q11 Stochastic gradient descent vs batch gradient descent
 - SGD faster BGD slower for every iteration
 - SGD usually reaches the same loss faster
 - SGD varies more due (better/worse) to the random updates (depending on point)
- Q16 Linear SVM vs Gaussian Kernel SVM
 - Linear Separability / Model Complexity
 - Data Sparsity: More features » data points
 - Compute complexity is tricky Time Taken for Linear is actually longer due to non-linear separability
 - Performance is also tricky More data added, Gaussian performs worse (overfitting)

NUS Student Feedback https://blue.nus.edu.sg/blue/, due 26 Apr:

- Don't Mix module/grading/project feedback feedback only for teaching.
- Feedback is confidential to university and anonymous to us.
- Feedback is optional but highly encouraged.
- Past student feedback improves teaching; see https://www.eric-han.com/teaching
 - ie. Telegram access, More interactivity.
- Your feedback is important to me, and will be used to improve my teaching.
 - Good > Positive feedback > Encouragement
 - Teaching Awards (nominate)
 - Steer my career path
 - Bad > Negative feedback (nicely pls) > Learning
 - Improvement
 - Better learning experience

Student Feedback on Teaching (SFT)

Your feedback is important to me; optional, but highly encouraged:

Figure 1: NUS Student Feedback on Teaching - https://blue.nus.edu.sg/blue/

Question 1

$$f^{[1]} = W^{[1]^{T}}X, \quad \hat{Y} = g^{[1]}(f^{[1]}), \quad \mathcal{E} = -\frac{1}{n} \sum_{i=0}^{n-1} \left\{ [Y_{0i} \cdot \log(\hat{Y}_{0i})] + [(1-Y_{0i})\log(1-\hat{Y}_{0i})] \right\}$$

Figure 2: Simple Neural Network

Question 1a [G]

When n = 1:

i.
$$\frac{\partial \mathcal{E}}{\partial \hat{Y}} = \left[-\frac{Y_{00}}{\hat{Y}_{00}} + \frac{1-Y_{00}}{1-\hat{Y}_{00}} \right] \text{ (Given}$$
ii.
$$\frac{\partial \mathcal{E}}{\partial f^{[1]}} = \hat{Y} - Y$$
iii.
$$\frac{\partial \mathcal{E}}{\partial W_{20}^{[1]}} = \left(\frac{\partial \mathcal{E}}{\partial f^{[1]}} \right)_{00} X_{20}$$

Recap

- What is back propagation?
- How to perform forward propagation?
- How to perform back propagation?

Answer ii

Since
$$n = 1$$
, $\frac{\partial \mathcal{E}}{\partial f^{[1]}} = \frac{\partial \mathcal{E}}{\partial f^{[0]}_{00}} = \frac{\partial \mathcal{E}}{\partial \hat{Y}_{00}} \frac{\partial \hat{Y}_{00}}{\partial f^{[1]}_{00}}$ (chain rule)
Since $\hat{Y}_{00} = \sigma(f^{[1]}_{00}) \implies \frac{\partial \hat{Y}_{00}}{\partial f^{[0]}_{00}} = \sigma(f^{[1]}_{00}) (1 - \sigma(f^{[1]}_{00})) = \hat{Y}_{00} (1 - \hat{Y}_{00})$
From (i), $\frac{\partial \mathcal{E}}{\partial \hat{Y}_{00}} = \left[-\frac{Y_{00}}{\hat{Y}_{00}} + \frac{1 - Y_{00}}{1 - \hat{Y}_{00}} \right]$
 $= \left[-\frac{Y_{00}}{\hat{Y}_{00}} + \frac{1 - Y_{00}}{1 - \hat{Y}_{00}} \right] \left[\hat{Y}_{00} (1 - \hat{Y}_{00}) \right]$
 $= \left[-\frac{Y_{00}}{\hat{Y}_{00}} + \frac{1 - Y_{00}}{1 - \hat{Y}_{00}} \right] \left[\hat{Y}_{00} (1 - \hat{Y}_{00}) \right]$
 $= \left[-Y_{00} (1 - \hat{Y}_{00}) + (1 - Y_{00}) \hat{Y}_{00} \right]$
 $= \left[\hat{Y}_{00} - Y_{00} \right]$
 $= \hat{Y} - Y.$

Answer iii

Since
$$n = 1$$
, $\frac{\partial \mathcal{E}}{\partial W_{20}^{[1]}} = \frac{\partial \mathcal{E}}{\partial f_{00}^{[1]}} \frac{\partial f_{00}^{[1]}}{\partial W_{20}^{[1]}}$ (chain rule)
 $f_{00}^{[1]} = W^{[1]^T} X = \sum_{i=0}^2 (W^{[1]^T})_{0i} X_{i0} = \sum_{i=0}^2 W_{i0}^{[1]} X_{i0} \implies \frac{\partial f_{00}^{[1]}}{\partial W_{20}^{[1]}} = X_{20}$

$$\frac{\partial \mathcal{E}}{\partial W_{20}^{[1]}} = \frac{\partial \mathcal{E}}{\partial f_{00}^{[1]}} \frac{\partial f_{00}^{[1]}}{\partial W_{20}^{[1]}}$$

$$= \frac{\partial \mathcal{E}}{\partial f_{00}^{[1]}} X_{20}$$

$$= \left(\frac{\partial \mathcal{E}}{\partial f^{[1]}}\right)_{00} X_{20}$$

Note: $\frac{\partial \mathcal{E}}{\partial \hat{Y}}$, and $\frac{\partial \mathcal{E}}{\partial f^{[1]}}$ are matrices since \mathcal{E} is a scalar, but \hat{Y} and $f^{[1]}$ are matrices. However, $\frac{\partial \mathcal{E}}{\partial W_{20}^{[1]}}$ is a scalar since $W_{20}^{[1]}$ is a scalar.

Question 1b-e [G]

- b. Derive an expression for $\frac{\partial \mathcal{E}}{\partial W^{[1]}}$, how does back propagation work?
- c. Let us consider a general case where $n \in \mathbb{N}$, find $\frac{\partial \mathcal{E}}{\partial f^{[1]}}$.
- d. Why do the hyper-parameters α and $\beta?$ How to set their values?

$$\mathcal{E} = -\frac{1}{n} \sum_{i=0}^{n-1} \left\{ \alpha [Y_{0i} \cdot \log(\hat{Y}_{0i})] + \beta [(1 - Y_{0i}) \cdot \log(1 - \hat{Y}_{0i})] \right\}$$

Answer 1b

From (a),
$$\frac{\partial \mathcal{E}}{\partial W_{i0}^{[1]}} = \left(\frac{\partial \mathcal{E}}{\partial f^{[1]}}\right)_{00} X_{i0}$$

$$\frac{\partial \mathcal{E}}{\partial W^{[1]}} = \left[\frac{\partial \mathcal{E}}{\partial W^{[1]}_{00}}, \frac{\partial \mathcal{E}}{\partial W^{[1]}_{10}}, \frac{\partial \mathcal{E}}{\partial W^{[1]}_{20}}\right]^{T} = \left(\frac{\partial \mathcal{E}}{\partial f^{[1]}}\right)_{00} [X_{00}, X_{10}, X_{20}]^{T} = \left(\frac{\partial \mathcal{E}}{\partial f^{[1]}}\right)_{00} X$$
$$= \left(\hat{Y} - Y\right) X = \left(g^{[1]}(f^{[1]}) - Y\right) X = \left(g^{[1]}(W^{[1]^{T}}X) - Y\right) X$$

Intuition behind back propagation $W^{[1]} = W^{[1]} - \alpha \frac{\partial \mathcal{E}}{\partial W^{[1]}}$:

- Change in first layer weighted sum $f^{[1]}$
- Change in predicted value \hat{Y}
- Change of loss ${\ensuremath{\mathcal E}}$
- Decrease the loss by changing the weights

Answer 1c

From (a),
$$\frac{\partial \mathcal{E}}{\partial f_{0i}^{[1]}} = \left[\frac{\partial \mathcal{E}}{\partial \hat{Y}_{0i}} \frac{\partial \hat{Y}_{0i}}{\partial f_{0i}^{[1]}}\right]$$

 $\frac{\partial \mathcal{E}}{\partial \hat{Y}} = \left[\frac{\partial \mathcal{E}}{\partial \hat{Y}_{00}}, \frac{\partial \mathcal{E}}{\partial \hat{Y}_{01}}, \cdots, \frac{\partial \mathcal{E}}{\partial \hat{Y}_{0n}}\right] = \left[\cdots, \frac{1}{n}\left(-\frac{Y_{0i}}{\hat{Y}_{0i}} + \frac{1-Y_{0i}}{1-\hat{Y}_{0i}}\right), \cdots\right]$
 $\frac{\partial \hat{Y}_{0i}}{\partial f_{0i}^{[1]}} = \sigma(f_{0i}^{[1]})\left(1 - \sigma(f_{0i}^{[1]})\right) = \hat{Y}_{0i}(1 - \hat{Y}_{0i})$

$$\frac{\partial \mathcal{E}}{\partial f^{[1]}} = \left[\frac{\partial \mathcal{E}}{\partial f_{00}^{[1]}}, \frac{\partial \mathcal{E}}{\partial f_{01}^{[1]}}, \cdots, \frac{\partial \mathcal{E}}{\partial f_{0n}^{[1]}} \right]$$
$$= \frac{1}{n} \left[(\hat{Y}_{00} - Y_{00}), (\hat{Y}_{01} - Y_{01}), \dots, (\hat{Y}_{0n} - Y_{0n}) \right]$$
$$= \frac{1}{n} (\hat{Y} - Y)$$

Answer 1d

Weighted Error:

$$\mathcal{E} = -\frac{1}{n} \sum_{i=0}^{n-1} \left\{ \alpha [Y_{0i} \cdot \log(\hat{Y}_{0i})] + \beta [(1-Y_{0i}) \cdot \log(1-\hat{Y}_{0i})] \right\}$$

Apply a weight to how much each class contributes to the loss function:

- Error due to Cultiva A ($p_A = 100/1100$): $Y_{0i} \cdot log(\hat{Y}_{0i})$
- Error due to Cultiva B ($p_B = 1000/1100$): $(1 Y_{0i}) \cdot log(1 \hat{Y}_{0i})$

Since we have unbalanced dataset, we can weight using the ratio $\frac{\alpha}{\beta} = \frac{1/100}{1/1000}$:

- $\alpha = 1/100$
- $\beta = 1/1000$

We punish the model more heavily if it misclassifies A, so the model won't be biased towards predicting all samples as B.

Question 2 [G]

When n = 1, compute $\frac{\partial \mathcal{E}}{\partial W_{11}^{[1]}}$, where $f^{[1]} = W^{[1]^T}X$, $a^{[1]} = g^{[1]}(f^{[1]})$, $f^{[2]} = W^{[2]^T}a^{[1]}$, $\hat{Y} = g^{[2]}(f^{[2]})$, $g^{[1]}(s) = ReLU(s)$, $g^{[2]}(s) = \sigma(s) = \frac{1}{1+e^{-s}}$, $W^{[1]} \in \mathbb{R}^{3 \times 2}$, $W^{[2]} \in \mathbb{R}^{2 \times 1}$.

Figure 3: Complex NN

[@] Is ReLU continous/discontinuous, not/differentiable; Can we use discontinuous activation functions?

Answer

Intuition: Plot the forward path and take the derivative.

$$W_{11}^{[1]} \xrightarrow{f^{[1]} = W^{[1]^{T}} X} f_{10}^{[1]} \xrightarrow{a^{[1]} = g^{[1]}(f^{[1]})} a_{10}^{[1]} \xrightarrow{f^{[2]} = W^{[2]^{T}} a^{[1]}} f_{00}^{[2]} \xrightarrow{\hat{Y} = g^{[2]}(f^{[2]})} \hat{Y}_{00} \to \mathcal{E}_{00}$$

$$f^{[1]} = \begin{bmatrix} W_{00}^{[1]} & W_{01}^{[1]} \\ W_{10}^{[1]} & W_{11}^{[1]} \\ W_{20}^{[1]} & W_{21}^{[1]} \end{bmatrix}^T \begin{bmatrix} X_{00} \\ X_{10} \\ X_{20} \end{bmatrix} = \begin{bmatrix} \sum_i W_{i0}^{[1]} X_{i0} \\ \sum_i W_{i1}^{[1]} X_{i0} \end{bmatrix}$$
$$f^{[2]} = \begin{bmatrix} W_{00}^{[2]} \\ W_{10}^{[2]} \end{bmatrix}^T \begin{bmatrix} a_{00}^{[1]} \\ a_{10}^{[1]} \end{bmatrix} = \begin{bmatrix} \sum_i W_{i0}^{[2]} a_{i0}^{[1]} \end{bmatrix}$$

Expand using chain rule: $\frac{\partial \mathcal{E}}{\partial \mathcal{W}_{11}^{[1]}} = \frac{\partial \mathcal{E}}{\partial \hat{Y}_{00}} \frac{\partial \hat{Y}_{00}}{\partial f_{00}^{[2]}} \frac{\partial f_{10}^{[2]}}{\partial a_{10}^{[1]}} \frac{\partial a_{10}^{[1]}}{\partial f_{10}^{[1]}} \frac{\partial f_{10}^{[1]}}{\partial W_{11}^{[1]}}$

Find each of the terms in
$$\frac{\partial \mathcal{E}}{\partial W_{11}^{[1]}} = \frac{\partial \mathcal{E}}{\partial \hat{Y}_{00}} \frac{\partial \hat{Y}_{00}}{\partial f_{00}^{[2]}} \frac{\partial f_{10}^{[2]}}{\partial a_{10}^{[1]}} \frac{\partial a_{10}^{[1]}}{\partial W_{11}^{[1]}}$$
:
• $\frac{\partial \mathcal{E}}{\partial \hat{Y}_{00}} = -\frac{\alpha Y_{00}}{\hat{Y}_{00}} + \frac{\beta (1-Y_{00})}{1-\hat{Y}_{00}}$
• $\frac{\partial \hat{Y}_{00}}{\partial f_{00}^{[2]}} = \sigma (f_{00}^{[2]}) (1 - \sigma (f_{00}^{[2]}))$
• $\frac{\partial f_{00}^{[2]}}{\partial f_{10}^{[1]}} = W_{10}^{[2]}$
• $\frac{\partial a_{10}^{[1]}}{\partial f_{10}^{[1]}} = \begin{cases} 0, \text{ if } f_{10}^{[1]} \leq 0 \\ 1, \text{ otherwise} \end{cases} = \mathbb{1}_{f_{10}^{[1]} > 0}$
• $\frac{\partial f_{10}^{[1]}}{\partial W_{11}^{[1]}} = X_{10}$
where $\mathbb{1}_{c(11)}$, is an indicator function. Therefore,

where $\mathbb{1}_{f_{10}^{[1]}>0}$ is an indicator function. Therefore, $\frac{\partial \mathcal{E}}{\partial W_{11}^{[1]}} = \Big[-\frac{\alpha Y_{00}}{\hat{Y}_{00}} + \frac{\beta(1-Y_{00})}{1-\hat{Y}_{00}} \Big] \sigma(f_{00}^{[2]}) \Big(1 - \sigma(f_{00}^{[2]}) \Big) W_{10}^{[2]} \mathbb{1}_{f_{10}^{[1]}>0} X_{10}$

Question 3 [G]

Figure 4: Layers / Max Abs Gradient, using sigmoid

- a. Gradient magnitudes of the first few layers are extremely small, what's the problem?
- b. Based on what we have learnt thus far, how can we mitigate this problem?
 - [@] Other sophisticated ways to resolve the issue, and why does it work?

Answer 3a

Figure 5: Sigmoid Function

- a. The eariler the weight, more terms needed to compute its update.
 - we need to take product of many, many derivatives
 - derivatives of sigmoid is in (0, 1/4]
 - ending up with a really small number
 - causing convergence to be slow.

Answer 3b

Use ReLU.

Figure 6: Layers / Max Abs Gradient, using ReLU

Investigate for exploding gradient as per question 3, use the code given for tutorial as a starting point.

Tasks

- 1. Implement a neural network that exhibits exploding gradient.
- 2. Plot the magnitudes for all layers like done in Question 3.
- 3. Analyse ways to mitigate the issue.

Buddy Attendance Taking

- 1. [@] and Bonus declaration is to be done here; You should show bonus to Eric.
- 2. Attempted tutorial should come with proof (sketches, workings etc...)
- 3. Guest students must inform Eric and also register the attendance.

Figure 7: Buddy Attendance: https://forms.gle/jsGfFyfo9PTgWxib6