High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

Eric Han,¹ Ishank Arora,² Jonathan Scarlett^{1,3}

¹School of Computing, National University of Singapore (NUS) ²Indian Institute of Technology (BHU) Varanasi ³Department of Mathematics & Institute of Data Science, NUS eric_han@nus.edu.sg, ishank.arora.cse14@iitbhu.ac.in, scarlett@comp.nus.edu.sg

35th AAAI Conference on Artificial Intelligence (Feb 2-9, 2021)

Eric Han, Ishank Arora, Jonathan Scarlett

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

(日)

Global Optimization Bayesian Optimization Challenges

Motivating Example

Classifier <u>SGDClassifier from sklearn</u> has the following parameters and more:

▶ loss ▶ penalty ▶ alpha ▶ l1_ratio ▶ fit_intercept ▶ max_iter ▶ epsilon · · ·

Just varying 2 parameters (7×3) , we get a huge variation in performance for MNIST:

	#1	#2	#3	• • •	#21
alpha	100	10	100		1
penalty	1	1	none		12
test accuracy	0.099	0.100	0.119		0.925

How can we find the best parameters in such a large space?

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

Global Optimization Bayesian Optimization Challenges

Global Optimization - Bayesian Optimization

Find the global maximizer x_{max} in \mathcal{X} :

$$x_{\max} = \arg \max_{x \in \mathcal{X}} f(x)$$

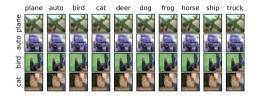
BO most suitable for black-box function f(x) with the following properties:

- 1. is explicitly unknown
- 2. may be perturbed (i.e. noise) when evaluated
- 3. is expensive when evaluated

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Global Optimization Bayesian Optimization Challenges

Applications



- Black-box Adversarial Attack: Attack Neural Network¹
- Model Selection & Parameter Tuning: Auto-Sklearn
- **Robotics**: Control Problems
- Finance: Optimizing portfolio
- Medicine: Pharmaceutical Product Development

¹Diagram taken from Ru et al. (2020)

Eric Han, Ishank Arora, Jonathan Scarlett

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

-

Global Optimization Bayesian Optimization Challenges

Bayesian Optimization

Mockus (1994) formulated BO as a sequential decision process:

- 1. Define a prior over the space of possible functions f(x)
- 2. Given some observations, get a posterior over f(x)
- 3. Decide next best location x to evaluate using acquisition function
- 4. Evaluate f(x) and add to observations

Two key ingredients:

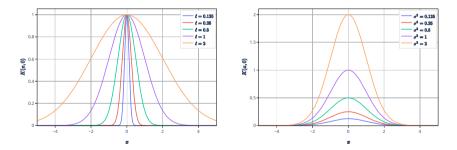
- Suitable Surrogate model: prior and posterior
- **Acquisition function**: balance exploration vs exploitation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Global Optimization Bayesian Optimization Challenges

Suitable Surrogate model - Gaussian Process

RBF Kernel:
$$K(x, x') = \sigma^2 \exp\left(-\frac{(x-x')^2}{2\ell^2}\right)$$
, ℓ : length-scale, σ : scale



Kernels describes the covariance of the GP random variables (smoothness)

Global Optimization Bayesian Optimization Challenges

HDBO - Key Challenges

Curse of dimensionality - needing exponentially many observations

Two significant opposing challenges:

- 1. **Structural Assumptions**: Identify low-dimensional structure to facilitate efficient the possibility of learning with relatively few samples.
- 2. **Computational Challenge**: Acquisition functions should be computationally efficient over higher dimensions.

Two key approaches from insights:

- 1. Low Effective Dimensionality: Only few dimensions significantly affect f
- 2. Additive Structure: Small subsets of variables interact with each other

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Global Optimization Bayesian Optimization Challenges

Approach 2 - Additive Structure

Kandasamy, Schneider, and Póczos (2015) formulated $f : \mathcal{X} \to \mathbb{R}$ as additive components:

$$f(x) = \sum_{G \in \mathcal{G}} f^G(x^G), \qquad \mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_{N_d}$$

- ▶ *G* denotes the set of variables, $G \subseteq \{1, \cdots, N_d\}$
- ▶ $f^{G}: \mathcal{X}^{G} \to \mathbb{R}$ is a low dimensional function defined on G
- \blacktriangleright $|\mathcal{G}|$ is the number of low dimensional functions
- > Assumed non-overlapping: f^{G} are pairwise independent

Rolland et al. (2018) generalizes Kandasamy, Schneider, and Póczos (2015) by allowing the groups to be overlapping.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Additive HDBO on Tree Structures - Contributions

The trend in the study of additive models has been to increase model expressiveness.

Simpler function class, reduces computation and allows suitable function to be found with fewer samples.

- 1. Trade-off expressiveness for scalability constraint dependency graph to trees
- 2. Extended message passsing with a zooming technique to continuous domains
- 3. Hybrid method, exploiting tree structures
 - 3.1 Grows tree via Gibbs sampling
 - 3.2 Edge mutation
- 4. Demonstrate the effectiveness of our approach in a wide range of experiments

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Optimize Acquisiton Functions Learn Dependency Structure

Additive HDBO on Tree Structures

$$h(x) = h^{A}(x_{1}, x_{6}) + h^{B}(x_{1}, x_{5}) + h^{C}(x_{1}, x_{4}) + h^{D}(x_{3}, x_{4}) + h^{E}(x_{2})$$

$$(x_{5})$$

$$(x_{6})$$

$$(x_{4})$$

$$(x_{3})$$

$$(x_{2})$$

UCB acquisition functions are broken into its subsequent components.

$$\phi_t(\mathbf{x}) = \sum_{\mathbf{G} \in \mathcal{G}} \phi_t^{\mathbf{G}} \left(\mathbf{x}^{\mathbf{G}} \right), \qquad \phi_t^{\mathbf{G}} = \mu_{t-1}^{\mathbf{G}} + \beta_t^{1/2} \sigma_{t-1}^{\mathbf{G}}$$

Eric Han, Ishank Arora, Jonathan Scarlett

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

イロト (日本) (日本) (日本) (日本)

Optimize Acquisiton Functions Learn Dependency Structure

Additive HDBO on Tree Structures

A	lgorithm 1: TREE-GP-UCB
1 r	nitialize $\mathcal{D}_0 \leftarrow \{(x_t, y_t)\}_{x_t \in X_{ ext{init}}}$
2 fe	or $t=\mathit{N}_{ ext{init}}+1,\ldots,\mathit{N}_{ ext{iter}}$ do
3	if $t \mod C = 0$ then
4	Learn $\mathcal{G} \leftarrow \text{Tree-Learning}$ (Alg. 3)
5	Update $\mu_t^{\mathcal{G}}, \sigma_t^{\mathcal{G}}: orall \mathcal{G} \in \mathcal{G}$ (3)
6	Optimize $x_t \leftarrow \arg \max_{x \in \mathcal{X}} \phi_t(x)$ (Alg. 2)
7	Observe $y_t \leftarrow f(x_t) + \epsilon$
8	Augment $\mathcal{D}_t \leftarrow \mathcal{D}_{t-1} \cup \{(x_t, y_t)\}$
9 r	eturn $\operatorname{argmax}_{(x,y)\in\mathcal{D}} y$

Eric Han, Ishank Arora, Jonathan Scarlett

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

イロト (同) (三) (三) (つ) (つ)

Optimize Acquisiton Functions Learn Dependency Structure

Optimize Acquisiton Functions - Message Passing (Discrete)

Optimization problem is broken down over junction trees, but for tree-structure:

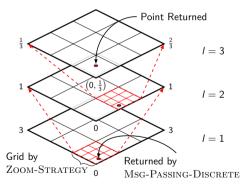
Due to tree structure, computation is reduced from **exponential** in the size of the maximum clique to **quadratic of the domain**.

-

Optimize Acquisiton Functions Learn Dependency Structure

Optimize Acquisiton Functions - Message Passing (Continuous)

	_
Algorithm 2: MSG-PASSING-CONTINUOUS	4
1 Initialize (\mathbf{a},\mathbf{b}) with the bounds of $\mathcal X$	1
2 for $l=1,\ldots,L$ do	2 f
3 for $d=1,\ldots,D$ do	
4 Discretize $\mathcal{X}_d \leftarrow [[a_d, b_d]]_R$	4
$\begin{array}{c c} 3 & \mathbf{for} \ d = 1, \dots, D \ \mathbf{do} \\ 4 & \begin{bmatrix} \text{Discretize} \ \mathcal{X}_d \leftarrow [[a_d, b_d]]_R \\ // \ \mathcal{X}_d = R \end{array}$	
5 $\mathcal{X} \leftarrow imes_{d=1}^{D} \mathcal{X}_{d}$	5
6 $(x, y) \leftarrow \text{Msg-Passing-Discrete}(\mathcal{X})$	6
7 Select $(\mathbf{a}, \mathbf{b}) \leftarrow \text{ZOOM-STRATEGY}(x)$	7
8 return (x, y)	8 r

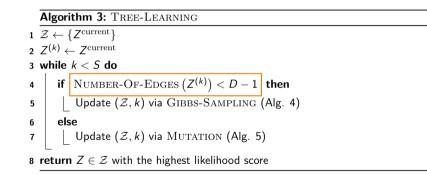


イロト (日本) (日本) (日本) (日本)

Eric Han, Ishank Arora, Jonathan Scarlett

Optimize Acquisiton Functions Learn Dependency Structure

Learn Dependency Structure



Exploiting Tree-Structure: Tree Sturcture: Gibbs-Sampling > Tree: Mutation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Learn Dependency Structure - Gibbs-Sampling

Algorithm 4: GIBBS-SAMPLING at *k*-th iteration Initalize UF data structure **2** for i = 1, ..., D do for i = 1, ..., i - 1 do 3 $Z(k+1) \leftarrow Z(k)$ 4 if cycle not formed by $Z_{ii}^{(k+1)} = 1$ then 5 Sample $Z_{ii}^{(new)}$ from posterior 6 $Z^{(k+1)} \leftarrow Z^{(\text{new})}_{::}$ 7 Update UF via union operation 8 Add $\mathcal{Z} \leftarrow \mathcal{Z} \cup \{Z^{(k+1)}\}$ q $k \leftarrow k + 1$ 10

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

・ロト (周) () () () () ()

3

Optimize Acquisiton Functions Learn Dependency Structure

Learn Dependency Structure - Mutation

Algorithm 5: MUTATION at *k*-th iteration

1 $\overline{Z^{(k+1)} \leftarrow Z^{(k)}}$

2
$$i,j \leftarrow$$
 Sample random edge for which $Z_{ij}^{(k+1)} = 1$

3 Remove edge:
$$Z_{ij}^{(k+1)} = 0$$

4
$$i', j' \leftarrow$$
 Sample nodes from the disconnected sub-trees

5 Sample
$$Z_{i'j'}^{(\text{new})}$$
 using posterior

6
$$Z^{(k+1)} \leftarrow Z^{(\text{new})}_{i'j'}$$

7 Augment the dataset:
$$\mathcal{Z} \leftarrow \mathcal{Z} \cup \{Z^{(k+1)}\}$$

8
$$k \leftarrow k+1$$

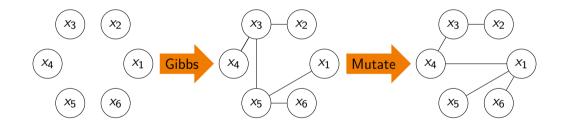
Eric Han, Ishank Arora, Jonathan Scarlett

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

イロト (同) (三) (三) (つ) (つ)

Optimize Acquisiton Functions Learn Dependency Structure

Learn Dependency Structure - Example



Eric Han, Ishank Arora, Jonathan Scarlett

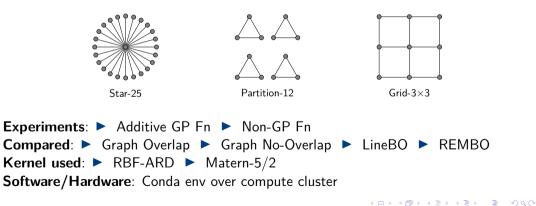
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

イロト (同) (三) (三) (つ) (つ)

Experiments with Additive GP Functions Experiments with Non-GP Functions

Experimental Setup

Identical parameters used across all methods, run 25 times in each experiment.



Metrics

Optimization Performance as best regret - closeness to the true optimal.

$$R_t = f_{\max} - f_t^*$$

Graph Learning Performance measures closeness of estimate G is from Gopt

$$\mathsf{F}_{1}\mathsf{score}\left(\mathcal{G}\right) = 2\frac{\mathsf{Precision}\left(\mathcal{G}\right) \times \mathsf{Recall}\left(\mathcal{G}\right)}{\mathsf{Precision}\left(\mathcal{G}\right) + \mathsf{Recall}\left(\mathcal{G}\right)}$$

 $\mathsf{Precision}\left(G\right) = \frac{|\mathsf{Edges}(G) \cap \mathsf{Edges}(G_{\mathsf{opt}})|}{|\mathsf{Edges}(G)|}, \qquad \mathsf{Recall}\left(G\right) = \frac{|\mathsf{Edges}(G) \cap \mathsf{Edges}(G_{\mathsf{opt}})|}{|\mathsf{Edges}(G_{\mathsf{opt}})|}$

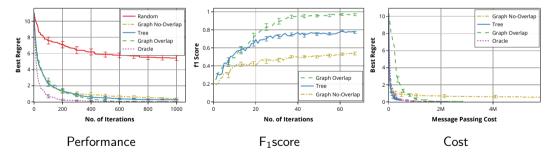
Cost Efficiency counts the number of individual acquisition function evaluations

イロト (同) (三) (三) (つ) (つ)

Experiments with Additive GP Functions Experiments with Non-GP Functions

Additive GP Functions - Not Realizable

Grid-3×3 (Continuous) - Tree and Graph No-Overlap are not realizable.

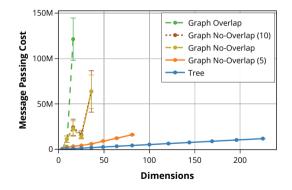


High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

イロト (日本) (日本) (日本) (日本)

Experiments with Additive GP Functions Experiments with Non-GP Functions

Additive GP Functions - Scalability



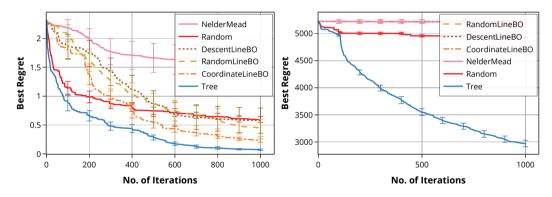
Scalability of Tree over dimensions

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

イロト (得) () (日) (日) (日)

Experiments with Additive GP Functions Experiments with Non-GP Functions

Experiments with Non-GP Functions - Synthetic



Hartmann6+14Aux Performance

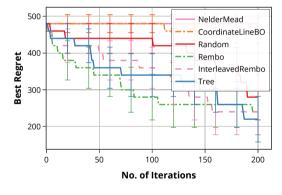
Stybtang250 Performance

イロト 不得 トイヨト イヨト ニヨー

Experiments with Additive GP Functions Experiments with Non-GP Functions

Experiments with Non-GP Functions - Real

Additional experiments in the Appendix.



Lpsolve-misc05inf Performance

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

・ロト・日本・エート エー・シックション

Experiments with Additive GP Functions Experiments with Non-GP Functions

Conclusion

Tree is competitive on both synthetic and real datasets.

- Constraint to tree-structures: Trade-off expressivity for computational efficiency and ease of model learning by reducing model complexity
- ► Hybrid structure learning: Exploit tree structure
 - Gibbs sampling: fast cycle checking
 - Edge mutation: mutation
- Zooming-based Message Passing: Extend generalized additive models to continuous domains.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

References

- Chen, Y.; Huang, A.; Wang, Z.; Antonoglou, I.; Schrittwieser, J.; Silver, D.; and de Freitas, N. 2018. Bayesian optimization in alphago. arXiv preprint arXiv:1812.06855.
- Kandasamy, K.; Schneider, J.; and Póczos, B. 2015. High dimensional Bayesian optimisation and bandits via additive models. In Int. Conf. Mach. Learn. (ICML), 295–304.
- Mockus, J. 1994. Application of Bayesian approach to numerical methods of global and stochastic optimization. Journal of Global Optimization 4(4):347–365.
- Rolland, P.; Scarlett, J.; Bogunovic, I.; and Cevher, V. 2018. High-dimensional Bayesian optimization via additive models with overlapping groups. In Int. Conf. Art. Intel. Stats. (AISTATS), 298–307.
- Ru, B.; Cobb, A.; Blaas, A.; and Gal, Y. 2020. BayesOpt Adversarial Attack. In Proc. of the International Conference on Learning Representations.

"Bayesian optimization provided an automatic solution to tune the game playing hyper-parameters of AlphaGo."¹

High-Dimensional Bayesian Optimization remains difficult, our work aim to

- Iower the computational resources
- facilitate faster model learning
- reducing the model complexity
- retaining the sample-efficiency of additive methods

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models (863) Eric Han, Ishank Arora, Jonathan Scarlett AAAI 2021

¹Quote from: Chen et al. (2018)