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Motivating Example

Classifier SGDClassifier from sklearn has the following parameters and more:

I loss I penalty I alpha I l1 ratio I fit intercept I max iter I epsilon · · ·

Just varying 2 parameters (7× 3), we get a huge variation in performance for MNIST:

#1 #2 #3 · · · #21
alpha 100 10 100 1

penalty l1 l1 none l2
test accuracy 0.099 0.100 0.119 0.925

How can we find the best parameters in such a large space?
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Global Optimization - Bayesian Optimization

Find the global maximizer xmax in X :

xmax = arg max
x∈X

f (x)

BO most suitable for black-box function f (x) with the following properties:
1. is explicitly unknown
2. may be perturbed (i.e. noise) when evaluated
3. is expensive when evaluated
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Applications

I Black-box Adversarial Attack: Attack Neural Network1

I Model Selection & Parameter Tuning: Auto-Sklearn
I Robotics: Control Problems
I Finance: Optimizing portfolio
I Medicine: Pharmaceutical Product Development

1Diagram taken from Ru et al. (2020)
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Bayesian Optimization

Mockus (1994) formulated BO as a sequential decision process:
1. Define a prior over the space of possible functions f (x)
2. Given some observations, get a posterior over f (x)
3. Decide next best location x to evaluate using acquisition function
4. Evaluate f (x) and add to observations

Two key ingredients:
I Suitable Surrogate model: prior and posterior
I Acquisition function: balance exploration vs exploitation
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Suitable Surrogate model - Gaussian Process

RBF Kernel: K (x , x ′) = σ2 exp
(
− (x−x ′)2

2`2

)
, `: length-scale, σ: scale
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Kernels describes the covariance of the GP random variables (smoothness)
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HDBO - Key Challenges

Curse of dimensionality - needing exponentially many observations

Two significant opposing challenges:
1. Structural Assumptions: Identify low-dimensional structure to facilitate efficient

the possibility of learning with relatively few samples.
2. Computational Challenge: Acquisition functions should be computationally

efficient over higher dimensions.
Two key approaches from insights:

1. Low Effective Dimensionality: Only few dimensions significantly affect f

2. Additive Structure: Small subsets of variables interact with each other
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Approach 2 - Additive Structure

Kandasamy, Schneider, and Póczos (2015) formulated f : X → R as additive
components:

f (x) =
∑
G∈G

f G
(
xG
)
, X = X1 × · · · × XNd

I G denotes the set of variables, G ⊆ {1, · · · ,Nd}
I f G : XG → R is a low dimensional function defined on G

I |G| is the number of low dimensional functions
I Assumed non-overlapping: f G are pairwise independent

Rolland et al. (2018) generalizes Kandasamy, Schneider, and Póczos (2015) by
allowing the groups to be overlapping.
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Additive HDBO on Tree Structures - Contributions

The trend in the study of additive models has been to increase model expressiveness.

Simpler function class, reduces computation and
allows suitable function to be found with fewer samples.

1. Trade-off expressiveness for scalability - constraint dependency graph to trees
2. Extended message passsing with a zooming technique to continuous domains
3. Hybrid method, exploiting tree structures

3.1 Grows tree via Gibbs sampling
3.2 Edge mutation

4. Demonstrate the effectiveness of our approach in a wide range of experiments

Eric Han, Ishank Arora, Jonathan Scarlett High-Dimensional Bayesian Optimization via Tree-Structured Additive Models



10/25

Introduction
HDBO via Tree-Structured Additive Models

Experiments and Results

Optimize Acquisiton Functions
Learn Dependency Structure

Additive HDBO on Tree Structures

h (x) = hA(x1, x6) + hB(x1, x5) + hC (x1, x4) + hD(x3, x4) + hE (x2)

x4x1

x5

x6

x3 x2

UCB acquisition functions are broken into its subsequent components.

φt (x) =
∑
G∈G

φGt

(
xG
)
, φGt = µGt−1 + β

1/2
t σGt−1
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Additive HDBO on Tree Structures

Algorithm 1: Tree-GP-UCB
1 Initialize D0 ← {(xt , yt)}xt∈Xinit

2 for t = Ninit + 1, . . . ,Niter do
3 if t mod C = 0 then
4 Learn G ← Tree-Learning (Alg. 3)

5 Update µGt , σGt : ∀G ∈ G (3)
6 Optimize xt ← arg maxx∈X φt (x) (Alg. 2)
7 Observe yt ← f (xt) + ε
8 Augment Dt ← Dt−1 ∪ {(xt , yt)}
9 return arg max(x ,y)∈D y
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Optimize Acquisiton Functions - Message Passing (Discrete)

Optimization problem is broken down over junction trees, but for tree-structure:

x4x1

x5

x6

x3 x2 M.P. x4x1

x5

x6

x3 x2

Due to tree structure, computation is reduced from exponential in the size of the
maximum clique to quadratic of the domain.
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Optimize Acquisiton Functions - Message Passing (Continuous)

Algorithm 2: Msg-Passing-Continuous
1 Initialize (a,b) with the bounds of X
2 for l = 1, . . . , L do
3 for d = 1, . . . ,D do
4 Discretize Xd ← [[ad , bd ]]R

// |Xd | = R

5 X ←×D
d=1Xd

6 (x , y)←Msg-Passing-Discrete (X )
7 Select (a,b)← Zoom-Strategy (x)

8 return (x , y)
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Learn Dependency Structure

Algorithm 3: Tree-Learning
1 Z ← {Z current}
2 Z (k) ← Z current

3 while k < S do
4 if Number-Of-Edges

(
Z (k)) < D − 1 then

5 Update (Z, k) via Gibbs-Sampling (Alg. 4)
6 else
7 Update (Z, k) via Mutation (Alg. 5)

8 return Z ∈ Z with the highest likelihood score

Exploiting Tree-Structure: I Tree Sturcture: Gibbs-Sampling I Tree: Mutation
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Learn Dependency Structure - Gibbs-Sampling

Algorithm 4: Gibbs-Sampling at k-th iteration
1 Initalize UF data structure
2 for j = 1, . . . ,D do
3 for i = 1, . . . , j − 1 do
4 Z (k+1) ← Z (k)

5 if cycle not formed by Z
(k+1)
ij = 1 then

6 Sample Z
(new)
ij from posterior

7 Z (k+1) ← Z
(new)
ij

8 Update UF via union operation
9 Add Z ← Z ∪

{
Z (k+1)}

10 k ← k + 1
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Learn Dependency Structure - Mutation

Algorithm 5: Mutation at k-th iteration
1 Z (k+1) ← Z (k)

2 i , j ← Sample random edge for which Z
(k+1)
ij = 1

3 Remove edge: Z
(k+1)
ij = 0

4 i ′, j ′ ← Sample nodes from the disconnected sub-trees
5 Sample Z

(new)
i ′j ′ using posterior

6 Z (k+1) ← Z
(new)
i ′j ′

7 Augment the dataset: Z ← Z ∪
{
Z (k+1)}

8 k ← k + 1
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Learn Dependency Structure - Example

x1

x2x3

x4

x5 x6

Gibbs x1

x2x3

x4

x5 x6

Mutate x1

x2x3

x4

x5 x6
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Experimental Setup

Identical parameters used across all methods, run 25 times in each experiment.

Star-25 Partition-12 Grid-3×3

Experiments: I Additive GP Fn I Non-GP Fn
Compared: I Graph Overlap I Graph No-Overlap I LineBO I REMBO
Kernel used: I RBF-ARD I Matern-5/2
Software/Hardware: Conda env over compute cluster
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Metrics

I Optimization Performance as best regret - closeness to the true optimal.

Rt = fmax − f ∗t

I Graph Learning Performance measures closeness of estimate G is from Gopt

F1score (G ) = 2Precision (G )× Recall (G )
Precision (G ) + Recall (G )

Precision (G ) = |Edges (G)∩Edges (Gopt)|
|Edges (G)| , Recall (G ) = |Edges (G)∩Edges (Gopt)|

|Edges (Gopt)|
I Cost Efficiency counts the number of individual acquisition function evaluations

Eric Han, Ishank Arora, Jonathan Scarlett High-Dimensional Bayesian Optimization via Tree-Structured Additive Models
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Additive GP Functions - Not Realizable

Grid-3×3 (Continuous) - Tree and Graph No-Overlap are not realizable.
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Additive GP Functions - Scalability
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Experiments with Non-GP Functions - Synthetic
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Experiments with Non-GP Functions - Real
Additional experiments in the Appendix.
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Conclusion

Tree is competitive on both synthetic and real datasets.
I Constraint to tree-structures: Trade-off expressivity for computational

efficiency and ease of model learning by reducing model complexity
I Hybrid structure learning: Exploit tree structure

I Gibbs sampling: fast cycle checking
I Edge mutation: mutation

I Zooming-based Message Passing: Extend generalized additive models to
continuous domains.
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AlphaGo
“Bayesian optimization provided an
automatic solution to tune the game
playing hyper-parameters of
AlphaGo.”1

High-Dimensional Bayesian Optimization remains difficult, our work aim to
I lower the computational resources
I facilitate faster model learning
I reducing the model complexity
I retaining the sample-efficiency of additive methods

High-Dimensional Bayesian Optimization via Tree-Structured Additive Models (863)
Eric Han, Ishank Arora, Jonathan Scarlett
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