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Highlights

We study robustness for GP optimization from an attacker’s perspective,
focusing on adversarial perturbations.
1. Study conditions under which an adversarial attack can succeed.
2. Present various attacks:

1. Known f : Subtraction Rnd and Subtraction Sq, Clipping Attack.
2. Unknown f : Aggressive Subtraction.

Demonstrated their effectiveness on a diverse range of functions.

Introduction

GP bandits is the problem of optimizing a black-box function f by using
derivative-free queries guided by a GP surrogate model,

max
x

f(x).

I Function observations can be subject to corruptions in the
applications, which are not adequately captured by random noise.

I Current literature focused on proposing methods that defend against
the proposed uncertainty model to improve robustness for GP opt.

Setup: With random noise zt ∼ N (0, σ2), adversarial noise ct and attack
budget C:

yt = f(xt) + ct + zt, where
n∑

t=1

|ct| ≤ C.

I Two distinct attack goals:
1. Targeted - make the player choose actions in a particular Rtarget.
2. Untargeted - make the player’s cumulative regret high.

Theoretical Study

Theorm 1 (Rough Sketch) Adversary performs an attack shifting the
original function f to f̃ , with sufficient conditions, resulting in linear regret
with high probability.
I Under sufficient conditions, optimizer finds peak of f̃ , so we can

bound the number of actions that fall outside Rtarget,
I Can then bound the budget needed for such perturbation,
I Since arg max f 6= arg max f̃ , regret is linear.
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Theory applies (even in certain cases where the attacker doesn’t know f )
to any algorithm that gets sublinear regret in non-corrupted setting.

Attack Methods (Known f )

Subtraction Attack: ‘swallow’ the peaks of the function f .

f̃(x) = f(x)− h(x)

I Subtraction Rnd (Top) - Let function h to be a bump fn.
I Subtraction Sq (Bottom) - Let function h to be an indicator fn.
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Discussion:
1. Strong theoretical guarantees for Rnd (depends on h).
2. Requiring knowledge of f .
3. Difficult to construct h in practice.

Clipping Attack: ‘cut’ the rest of the fn f off by ∆ from the peak in Rtarget.

f̃(x) =

{
f(x) x ∈ Rtarget

min {f(x), f(x̃∗)−∆} x /∈ Rtarget,
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Discussion:
1. Practical, easy to implement and performs well.
2. f̃ not in RKHS; our theoretical analysis does not follow.

Further Information

Full paper at
https://arxiv.org/abs/2110.08449.

Attack Methods (Unknown f )

Aggressive Subtraction Attack: subtract all points outside Rtarget by
roughly the same value hmax.

f̃(x) =

{
f(x) x ∈ Rtarget

f(x)− hmax x /∈ Rtarget.

I With ‘transition region’ (Top) - So that f̃ is smooth to match theory.
I Without (Bottom) - Simplified version used for experiments.
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Discussion:
1. Strong theoretical guarantees with ‘transition region’.
2. Just knowing that Rtarget has a local maximum is sufficient.

Experiments and Results

Each point on the plots correspond a particular attack hyperparameter;
averaged over several runs, where the metrics are measured:

Success-Rate (t) =
|Rtarget ∩Xt|

t
, Normalized-Cost (t) =

∑
a∈At

a

fmax − fmin
.

Summary of key findings:
I Clipping works consistently.
I Aggressive Subtraction works, but with higher cost.
I Subtraction Rnd and Sq is ‘in between’, with Rnd narrowly beating Sq.
Additional Experiments can be found in our paper; with more synthetic
experiments up to 6 dimensions and robot pushing experiments.

https://github.com/eric-vader/Attack-BO ICML 2022
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